IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3706-d579074.html
   My bibliography  Save this article

An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland

Author

Listed:
  • Justyna Zalewska

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Krzysztof Damaziak

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

  • Jerzy Malachowski

    (Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland)

Abstract

Contrary to the extensive amount of research on large wind turbines, substantial analyses of small wind turbines are still rare. In the present study, the wind energy potential of three locations in Poland is analyzed using real wind data from a five-year period and the parameters of the selected turbine model. Appropriate simulations are performed to assess the energy efficiency of the analyzed investments at a coastal, foothill, or lowland site. According to the results, the most favorable location for a small wind turbine is the coastal site (wind zone I). The payback time at this location is approximately 13 years, whereas the payback times at the other two analyzed are more than 3 times longer. The payback periods for the latter locations significantly exceed the estimated lifetime of the wind turbine, ruling out their economic viability. The cost of electricity generation varies greatly, from 0.16 EUR/kWh at the coastal location to 0.71 EUR/kWh at the lowland location. These results provide a reference for developing more efficient solutions, such as the use of a turbine with a shielded rotor, which can increase the power of the turbine by approximately 2.5 times.

Suggested Citation

  • Justyna Zalewska & Krzysztof Damaziak & Jerzy Malachowski, 2021. "An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland," Energies, MDPI, vol. 14(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3706-:d:579074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Osvaldo Rodriguez-Hernandez & Manuel Martinez & Carlos Lopez-Villalobos & Hector Garcia & Rafael Campos-Amezcua, 2019. "Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area," Energies, MDPI, vol. 12(5), pages 1-26, March.
    4. María-Jesús Gutiérrez-Pedrero & María J. Ruiz-Fuensanta & Miguel-Ángel Tarancón, 2020. "Regional Factors Driving the Deployment of Wind Energy in Spain," Energies, MDPI, vol. 13(14), pages 1-13, July.
    5. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
    6. Sakka, Evelyn G. & Bilionis, Dimitrios V. & Vamvatsikos, Dimitrios & Gantes, Charis J., 2020. "Onshore wind farm siting prioritization based on investment profitability for Greece," Renewable Energy, Elsevier, vol. 146(C), pages 2827-2839.
    7. Giulio Vita & Anina Šarkić-Glumac & Hassan Hemida & Simone Salvadori & Charalampos Baniotopoulos, 2020. "On the Wind Energy Resource above High-Rise Buildings," Energies, MDPI, vol. 13(14), pages 1-23, July.
    8. Jakub Bukala & Krzysztof Damaziak & Krzysztof Jozwik & Maciej Karczewski & Hamid Reza Karimi & Jerzy Malachowski & Krzysztof Sobczak & Tomasz Szafranski & Michal Tomaszewski, 2016. "Small Wind Turbines: Specification, Design, and Economic Evaluation," Chapters, in: Abdel Ghani Aissaoui & Ahmed Tahour (ed.), Wind Turbines - Design, Control and Applications, IntechOpen.
    9. Donato Morea & Luigi Antonio Poggi, 2017. "An Innovative Model for the Sustainability of Investments in the Wind Energy Sector: The Use of Green Sukuk in an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 53-60.
    10. Bukala, Jakub & Damaziak, Krzysztof & Karimi, Hamid Reza & Kroszczynski, Krzysztof & Krzeszowiec, Marcin & Malachowski, Jerzy, 2015. "Modern small wind turbine design solutions comparison in terms of estimated cost to energy output ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1166-1173.
    11. Saint-Drenan, Yves-Marie & Besseau, Romain & Jansen, Malte & Staffell, Iain & Troccoli, Alberto & Dubus, Laurent & Schmidt, Johannes & Gruber, Katharina & Simões, Sofia G. & Heier, Siegfried, 2020. "A parametric model for wind turbine power curves incorporating environmental conditions," Renewable Energy, Elsevier, vol. 157(C), pages 754-768.
    12. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    13. Lipian, Michal & Dobrev, Ivan & Karczewski, Maciej & Massouh, Fawaz & Jozwik, Krzysztof, 2019. "Small wind turbine augmentation: Experimental investigations of shrouded- and twin-rotor wind turbine systems," Energy, Elsevier, vol. 186(C).
    14. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Zagubień & Katarzyna Wolniewicz, 2022. "Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies," Energies, MDPI, vol. 15(14), pages 1-15, July.
    2. Tetiana Kurbatova & Iryna Sotnyk & Olha Prokopenko & Iryna Bashynska & Uliana Pysmenna, 2023. "Improving the Feed-in Tariff Policy for Renewable Energy Promotion in Ukraine’s Households," Energies, MDPI, vol. 16(19), pages 1-18, September.
    3. Magdalena Maciaszczyk & Aneta Czechowska-Kosacka & Agnieszka Rzepka & Tomasz Lipecki & Ewa Łazuka & Paweł Wlaź, 2022. "Consumer Awareness of Renewable Energy Sources: The Case of Poland," Energies, MDPI, vol. 15(22), pages 1-16, November.
    4. Waldemar Kuczyński & Katarzyna Wolniewicz & Henryk Charun, 2021. "Analysis of the Wind Turbine Selection for the Given Wind Conditions," Energies, MDPI, vol. 14(22), pages 1-16, November.
    5. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    2. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    3. Michal Lipian & Michal Kulak & Malgorzata Stepien, 2019. "Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development," Energies, MDPI, vol. 12(9), pages 1-13, April.
    4. Osvaldo Rodriguez-Hernandez & Manuel Martinez & Carlos Lopez-Villalobos & Hector Garcia & Rafael Campos-Amezcua, 2019. "Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area," Energies, MDPI, vol. 12(5), pages 1-26, March.
    5. Małgorzata Stępień & Michał Kulak & Krzysztof Jóźwik, 2020. "“Fast Track” Analysis of Small Wind Turbine Blade Performance," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    7. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    8. Teschner, Na'ama & Alterman, Rachelle, 2018. "Preparing the ground: Regulatory challenges in siting small-scale wind turbines in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1660-1668.
    9. Menegozzo, L. & Dal Monte, A. & Benini, E. & Benato, A., 2018. "Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions," Renewable Energy, Elsevier, vol. 121(C), pages 123-132.
    10. Basem Ertimi & Tamat Sarmidi & Norlin Khalid & Mohd Helmi Ali, 2021. "The Policy Framework of Natural Resource Management in Oil-Dependence Countries," Economies, MDPI, vol. 9(1), pages 1-17, February.
    11. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    12. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    13. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    14. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    15. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    16. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    17. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    18. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    19. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    20. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3706-:d:579074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.