IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2969-d558745.html
   My bibliography  Save this article

A Mobile Energy Storage Unit Serving Multiple EV Charging Stations

Author

Listed:
  • Mohamed M. Elmeligy

    (Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Mostafa F. Shaaban

    (Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Ahmed Azab

    (Production & Operations Management Research Lab, Faculty of Engineering, University of Windsor, 401 Sunset Ave., Windsor, ON N9B-3P4, Canada)

  • Maher A. Azzouz

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Mohamed Mokhtar

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

Due to the rapid increase in electric vehicles (EVs) globally, new technologies have emerged in recent years to meet the excess demand imposed on the power systems by EV charging. Among these technologies, a mobile energy storage system (MESS), which is a transportable storage system that provides various utility services, was used in this study to support several charging stations, in addition to supplying power to the grid during overload and on-peak hours. Thus, this paper proposes a new day-ahead optimal operation of a single MESS unit that serves several charging stations that share the same geographical area. The operational problem is formulated as a mixed-integer non-linear programming (MINLP), where the objective is to minimize the total operating cost of the parking lots (PLs). Two different case studies are simulated to highlight the effectiveness of the proposed system compared to the current approach.

Suggested Citation

  • Mohamed M. Elmeligy & Mostafa F. Shaaban & Ahmed Azab & Maher A. Azzouz & Mohamed Mokhtar, 2021. "A Mobile Energy Storage Unit Serving Multiple EV Charging Stations," Energies, MDPI, vol. 14(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2969-:d:558745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    2. Peter Haidl & Armin Buchroithner & Bernhard Schweighofer & Michael Bader & Hannes Wegleiter, 2019. "Lifetime Analysis of Energy Storage Systems for Sustainable Transportation," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    3. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    2. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    3. Alessandro Ferrara & Saeid Zendegan & Hans-Michael Koegeler & Sajin Gopi & Martin Huber & Johannes Pell & Christoph Hametner, 2022. "Optimal Calibration of an Adaptive and Predictive Energy Management Strategy for Fuel Cell Electric Trucks," Energies, MDPI, vol. 15(7), pages 1-20, March.
    4. Peter Haidl & Armin Buchroithner, 2021. "Design of a Low-Loss, Low-Cost Rolling Element Bearing System for a 5 kWh/100 kW Flywheel Energy Storage System," Energies, MDPI, vol. 14(21), pages 1-28, November.
    5. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    6. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    7. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    8. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    9. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    10. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    11. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    13. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    14. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    17. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    18. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    19. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Tomas Macak & Jan Hron & Jaromir Stusek, 2020. "A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2969-:d:558745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.