IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2851-d555315.html
   My bibliography  Save this article

Using Thermal Energy Storage to Relieve Wind Generation Curtailment in an Island Microgrid

Author

Listed:
  • Huanhuan Luo

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110027, China
    State Grid Liaoning Electrical Power Company, Shenyang 110006, China)

  • Weichun Ge

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110027, China
    State Grid Liaoning Electrical Power Company, Shenyang 110006, China)

  • Jingzhuo Sun

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Quanyuan Jiang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yuzhong Gong

    (Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada)

Abstract

The uncertainty and intermittency of the available wind resource in nature would potentially cause wind generation curtailment when the flexibility of the integrated power grid is limited, especially in small-scale microgrids for islands. In this paper, an optimal configuration method is proposed to use thermal energy storage (TES) to relieve wind generation curtailment in an island microgrid. The thermal network is modeled along with the electrical network to utilize its regulation capability, while TES is introduced as an additional flexibility resource. The detailed cost models of combined heat and power (CHP) units and TES are presented to realize the objective of minimizing the overall operating cost. The performance of TES in improving wind power utilization is firstly validated by using an electrical boiler (EB) as a benchmark and further analyzed under different scenarios considering the growths of wind power capacity, electrical load, and heat load. The effectiveness of the proposed method is validated using real-world data obtained from the practical island microgrid.

Suggested Citation

  • Huanhuan Luo & Weichun Ge & Jingzhuo Sun & Quanyuan Jiang & Yuzhong Gong, 2021. "Using Thermal Energy Storage to Relieve Wind Generation Curtailment in an Island Microgrid," Energies, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2851-:d:555315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tooryan, Fatemeh & HassanzadehFard, Hamid & Collins, Edward R. & Jin, Shuangshuang & Ramezani, Bahram, 2020. "Smart integration of renewable energy resources, electrical, and thermal energy storage in microgrid applications," Energy, Elsevier, vol. 212(C).
    2. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    3. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    4. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    5. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomi Thomasson & Kirsikka Kiviranta & Antton Tapani & Matti Tähtinen, 2021. "Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands," Energies, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    5. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    6. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    7. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    9. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    11. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    12. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    13. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    14. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    15. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    16. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    17. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    18. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    19. Heydarzadeh, Zahra & Mac Kinnon, Michael & Thai, Clinton & Reed, Jeff & Brouwer, Jack, 2020. "Marginal methane emission estimation from the natural gas system," Applied Energy, Elsevier, vol. 277(C).
    20. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2851-:d:555315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.