IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2838-d554948.html
   My bibliography  Save this article

A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus

Author

Listed:
  • Francesca Valenti

    (Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy)

  • Attilio Toscano

    (Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 50, 40127 Bologna, Italy)

Abstract

The necessity of developing renewable energy sources has contributed to increasing interest in developing the anaerobic digestion for producing biomethane since it both provides green energy and reduces disposal treatment. In this regard, to assure efficient water utilization by finding alternative water sources, sewage sludge collected from the wastewater treatment plant (WWTP) was recently investigated because it could represent a suitable resource for producing biomethane within the context of a circular economy. Therefore, this study aims at improving the current knowledge on the feasibility of biomethane production from sewage sludge by optimizing the logistic-supplying phase. In this regard, a GIS-based model was developed and applied to the Emilia-Romagna region to consider the existing networks of WWTPs and biogas systems to valorize sewage sludge for bioenergy production and minimizing environmental impact. The results of the GIS analyses allowed to localize the highest productive territorial areas and highlighted where sewage sludges are abundantly located and could be better exploited within agricultural biogas plants. Finally, the achieved results could help plan suitable policy interventions that are centered on biomass supply and outputs diversification, governance, and social participation, since the regulatory framework could play a crucial role in planning the reuse of these wastes for developing a more sustainable biomethane sector in line with the green economy goals.

Suggested Citation

  • Francesca Valenti & Attilio Toscano, 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus," Energies, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2838-:d:554948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Huan & Jin, Chang & Zhang, Zhanying & O'Hara, Ian & Mundree, Sagadevan, 2017. "Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways," Energy, Elsevier, vol. 126(C), pages 649-657.
    2. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    3. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    4. Cavicchi, Bianca & Bryden, John M. & Vittuari, Matteo, 2014. "A comparison of bioenergy policies and institutional frameworks in the rural areas of Emilia Romagna and Norway," Energy Policy, Elsevier, vol. 67(C), pages 355-363.
    5. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    6. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    7. Cheng, Jun & Ding, Lingkan & Lin, Richen & Yue, Liangchen & Liu, Jianzhong & Zhou, Junhu & Cen, Kefa, 2016. "Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance," Applied Energy, Elsevier, vol. 184(C), pages 1-8.
    8. Duncan Graham-Rowe, 2011. "Agriculture: Beyond food versus fuel," Nature, Nature, vol. 474(7352), pages 6-8, June.
    9. Francesca Valenti & Simona M. C. Porto, 2019. "Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products," Energies, MDPI, vol. 12(3), pages 1-15, February.
    10. Comber, Alexis & Dickie, Jennifer & Jarvis, Claire & Phillips, Martin & Tansey, Kevin, 2015. "Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply," Applied Energy, Elsevier, vol. 154(C), pages 309-316.
    11. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    12. Carrosio, Giovanni, 2013. "Energy production from biogas in the Italian countryside: Policies and organizational models," Energy Policy, Elsevier, vol. 63(C), pages 3-9.
    13. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    14. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    15. Nghiem, Long D. & Koch, Konrad & Bolzonella, David & Drewes, Jörg E., 2017. "Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 354-362.
    16. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Mancuso & Monica C. M. Parlato & Stevo Lavrnić & Attilio Toscano & Francesca Valenti, 2022. "GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    2. Bartosz Szeląg & Szymon Sobura & Renata Stoińska, 2023. "Application of Multispectral Images from Unmanned Aerial Vehicles to Analyze Operations of a Wastewater Treatment Plant," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Andrey Kiselev & Elena Magaril & Deborah Panepinto & Elena Cristina Rada & Marco Ravina & Maria Chiara Zanetti, 2021. "Sustainable Energy Management Benchmark at Wastewater Treatment Plant," Sustainability, MDPI, vol. 13(22), pages 1-11, November.
    4. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    5. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Julia Burmistrova & Marc Beutel & Erin Hestir & Rebecca Ryals & Pramod Pandey, 2022. "Anaerobic Co-Digestion to Enhance Waste Management Sustainability at Yosemite National Park," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    3. Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
    4. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    6. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Aleksandra Szaja & Agnieszka Montusiewicz & Magdalena Lebiocka, 2021. "The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation," Energies, MDPI, vol. 14(19), pages 1-12, September.
    8. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Bianca Cavicchi & Sergio Palmieri & Marco Odaldi, 2017. "The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation," Sustainability, MDPI, vol. 9(3), pages 1-22, March.
    10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    11. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    12. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    13. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    17. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Strazzabosco, A. & Conrad, S.A. & Lant, P.A. & Kenway, S.J., 2020. "Expert opinion on influential factors driving renewable energy adoption in the water industry," Renewable Energy, Elsevier, vol. 162(C), pages 754-765.
    19. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    20. Syaichurrozi, Iqbal, 2018. "Biogas production from co-digestion Salvinia molesta and rice straw and kinetics," Renewable Energy, Elsevier, vol. 115(C), pages 76-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2838-:d:554948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.