IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p93-d468754.html
   My bibliography  Save this article

Bioenergy Conversion Potential of Decaying Hardwoods

Author

Listed:
  • Éloïse Dupuis

    (Research Centre on Renewable Materials, Department of Wood and Forest Sciences, Laval University, Qubec City, QC G1V 0A6, Canada)

  • Evelyne Thiffault

    (Research Centre on Renewable Materials, Department of Wood and Forest Sciences, Laval University, Qubec City, QC G1V 0A6, Canada)

  • Julie Barrette

    (Quebec Ministry of Forests, Wildlife and Parks, Direction of Forest Research, Quebec City, QC G1P 3W8, Canada)

  • Kokou Adjallé

    (INRS-ETE, Université de Québec, Quebec City, QC G1K 9A9, Canada)

  • Christine Martineau

    (Canadian Forest Service-Natural Resources Canada Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Ste-Foy, Quebec City, QC G1V 4C7, Canada)

Abstract

Unharvested hardwoods are abundant in eastern Canada, due to the low quality of their fiber and the absence of outlets in conventional wood transformation industries. The objective of this study was to assess the biochemical and thermochemical energy conversion potential of decaying hardwoods and compare their relationships with external and internal indicators of tree degradation. We characterized how wood-decay processes altered the physical and chemical properties of these woods and affected their digestibility yield and their performance according to indexes of stability and efficiency of combustion. DNA analysis on wood samples was also performed to determine the relative abundance of white-rot fungi compared to that of other saprotrophs. All properties stayed within the range of variations allowing the wood to remain suitable for conversion into bioenergy, even with increased decay. We found no significant differences in the physical and chemical properties that are crucial for energy production between wood from externally-assessed live and decayed trees. However, the proportion of wood area affected by rot was significantly associated with increased digestibility yield, and with decreased combustion reactivity. We could not detect any specific effect associated with increased relative abundance of white-rot fungi. These results suggest that the utilization of biomass from decayed hardwoods instead of live trees for bioenergy production should not alter the conversion efficiency and even potentially increase the performance of biochemical pathways, and hence, support their use as feedstock for bioenergy production.

Suggested Citation

  • Éloïse Dupuis & Evelyne Thiffault & Julie Barrette & Kokou Adjallé & Christine Martineau, 2020. "Bioenergy Conversion Potential of Decaying Hardwoods," Energies, MDPI, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:93-:d:468754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrette, Julie & Thiffault, Evelyne & Achim, Alexis & Junginger, Martin & Pothier, David & De Grandpré, Louis, 2017. "A financial analysis of the potential of dead trees from the boreal forest of eastern Canada to serve as feedstock for wood pellet export," Applied Energy, Elsevier, vol. 198(C), pages 410-425.
    2. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    3. Guan-Bang Chen & Jia-Wen Li & Hsien-Tsung Lin & Fang-Hsien Wu & Yei-Chin Chao, 2018. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method," Energies, MDPI, vol. 11(9), pages 1-17, August.
    4. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    2. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    5. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    6. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    7. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    8. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    9. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    10. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    11. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    12. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    13. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    14. Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
    15. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    16. Mudassar Azam & Asma Ashraf & Saman Setoodeh Jahromy & Sajjad Miran & Nadeem Raza & Florian Wesenauer & Christian Jordan & Michael Harasek & Franz Winter, 2021. "Co-Combustion Studies of Low-Rank Coal and Refuse-Derived Fuel: Performance and Reaction Kinetics," Energies, MDPI, vol. 14(13), pages 1-13, June.
    17. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    18. Solarte-Toro, Juan Camilo & Chacón-Pérez, Yessica & Piedrahita-Rodríguez, Sara & Poveda Giraldo, Jhonny Alejandro & Teixeira, José António & Moustakas, Konstantinos & Alzate, Carlos Ariel Cardona, 2020. "Effect of dilute sulfuric acid pretreatment on the physicochemical properties and enzymatic hydrolysis of coffee cut-stems," Energy, Elsevier, vol. 195(C).
    19. Cardona, Eliana & Llano, Biviana & Peñuela, Mariana & Peña, Juan & Rios, Luis Alberto, 2018. "Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions," Energy, Elsevier, vol. 160(C), pages 441-451.
    20. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:93-:d:468754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.