IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2046-d347796.html
   My bibliography  Save this article

Experimental and Simulation Modal Analysis of a Prismatic Battery Module

Author

Listed:
  • Bizhong Xia

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Fan Liu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Chao Xu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Yifan Liu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Yongzhi Lai

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Weiwei Zheng

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Wei Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

Abstract

The battery pack is the core component of a new energy vehicle (NEV), and reducing the impact of vibration induced resonance from the ground is a prerequisite for the safety of an NEV. For a high-performance battery pack design, a clear understanding of the structural dynamics of the key part of battery pack, such as the battery module, is of great significance. Additionally, a proper computational model for simulations of battery module also plays a key role in correctly predicting the dynamic response of battery packs. In this paper, an experimental modal analysis (EMA) was performed on a typical commercial battery module, composed of twelve 37Ah lithium nickel manganese cobalt oxide (NMC) prismatic cells, to obtain modal parameters such as mode shapes and natural frequencies. Additionally, three modeling methods for a prismatic battery module were established for the simulation modal analysis. The method of simplifying the prismatic cell to homogenous isotropic material had a better performance than the detailed modeling method, in predicting the modal parameters. Simultaneously, a novel method that can quickly obtain the equivalent parameters of the cell was proposed. The experimental results indicated that the fundamental frequency of battery module was higher than the excitation frequency range (0–150 Hz) from the ground. The mode shapes of the simulation results were in good agreement with the experimental results, and the average error of the natural frequency was below 10%, which verified the validity of the numerical model.

Suggested Citation

  • Bizhong Xia & Fan Liu & Chao Xu & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Wei Wang, 2020. "Experimental and Simulation Modal Analysis of a Prismatic Battery Module," Energies, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2046-:d:347796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    2. Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
    3. Du, Jiuyu & Meng, Xiangfeng & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Ouyang, Minggao, 2018. "Insights into the characteristics of technologies and industrialization for plug-in electric cars in China," Energy, Elsevier, vol. 164(C), pages 910-924.
    4. Hartmut Popp & Gregor Glanz & Karoline Alten & Irina Gocheva & Wernfried Berghold & Alexander Bergmann, 2018. "Mechanical Frequency Response Analysis of Lithium-Ion Batteries to Disclose Operational Parameters," Energies, MDPI, vol. 11(3), pages 1-13, March.
    5. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    3. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    4. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    5. Richard Beaumont & Iain Masters & Abhishek Das & Steve Lucas & Arunn Thanikachalam & David Williams, 2021. "Methodology for Developing a Macro Finite Element Model of Lithium-Ion Pouch Cells for Predicting Mechanical Behaviour under Multiple Loading Conditions," Energies, MDPI, vol. 14(7), pages 1-21, March.
    6. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    7. Bhandari, Vivek & Sun, Kaiyang & Homans, Frances, 2018. "The profitability of vehicle to grid for system participants - A case study from the Electricity Reliability Council of Texas," Energy, Elsevier, vol. 153(C), pages 278-286.
    8. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
    9. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.
    11. Wang, Kai-Hua & Su, Chi-Wei & Xiao, Yidong & Liu, Lu, 2022. "Is the oil price a barometer of China's automobile market? From a wavelet-based quantile-on-quantile regression perspective," Energy, Elsevier, vol. 240(C).
    12. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    13. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    14. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    15. Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2016. "Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles," Energy, Elsevier, vol. 115(P3), pages 1617-1622.
    16. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    17. Zhijie Li & Jiqing Chen & Fengchong Lan & Yigang Li, 2021. "Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading," Energies, MDPI, vol. 14(5), pages 1-22, February.
    18. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    19. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    20. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2046-:d:347796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.