IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1820-d343552.html
   My bibliography  Save this article

Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks

Author

Listed:
  • Zihao Cheng

    (School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Songlin Hu

    (College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Jieting Ma

    (State Grid Xinxiang Power Supply Company, Xinxiang 453000, China)

Abstract

This paper is concerned with resilient triggered control problem for load frequency control and virtual synchronous generation (LFC-VSG) scheme of discrete-time multi-area power system with parameter uncertainty, governor dead band (GDB), and low inertia under time delay and aperiodic Denial-of-Service (DoS) attacks. To reduce communication load of sleep intervals, event triggered mechanism (ETM) is introduced. A discrete-time switched delay system model is established to describe the dynamic of multi-area power system under resilient static output feedback control law. Combining piecewise Lyapunov–Krasovskii functional (LKF) method with switched system theory, a criterion is derived that the tolerant bound of attack duration and attack frequency can be estimated explicitly. Meanwhile, some sufficient conditions are obtained which can preserve weighted H ∞ performance. By using linear matrix inequalities (LMIs) techniques, a co-design method is proposed to solve the control gains and trigger parameters. A simulation example of a two-area power system was carried out to verify the efficiency of our proposed resilient event based LFC-VSG scheme.

Suggested Citation

  • Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1820-:d:343552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    2. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    3. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    4. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    5. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    8. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    9. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    11. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    12. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    13. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    14. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    16. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    17. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    18. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    19. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    20. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1820-:d:343552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.