IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1703-d341210.html
   My bibliography  Save this article

Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization

Author

Listed:
  • Walter Gil-González

    (Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, km 1 vía Turbaco, Cartagena 131001, Colombia)

  • Oscar Danilo Montoya

    (Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, km 1 vía Turbaco, Cartagena 131001, Colombia
    Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Carrera 7 No. 40B-53, Bogotá D.C 11021, Colombia)

  • Luis Fernando Grisales-Noreña

    (Grupo GIIEN, Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Campus Robledo, Medellín 050036, Colombia)

  • Fernando Cruz-Peragón

    (Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, Campus Las Lagunillas s/n. 23071 Jaén, Spain)

  • Gerardo Alcalá

    (Centro de Investigación en Recursos Energéticos y Sustentables, Universidad Veracruzana, Coatzacoalcos, Veracruz 96535, Mexico)

Abstract

A convex mathematical model based on second-order cone programming (SOCP) for the optimal operation in direct current microgrids (DCMGs) with high-level penetration of renewable energies and battery energy storage systems (BESSs) is developed in this paper. The SOCP formulation allows converting the non-convex model of economic dispatch into a convex approach that guarantees the global optimum and has an easy implementation in specialized software, i.e., CVX. This conversion is accomplished by performing a mathematical relaxation to ensure the global optimum in DCMG. The SOCP model includes changeable energy purchase prices in the DCMG operation, which makes it in a suitable formulation to be implemented in real-time operation. An energy short-term forecasting model based on a receding horizon control (RHC) plus an artificial neural network (ANN) is used to forecast primary sources of renewable energy for periods of 0.5h. The proposed mathematical approach is compared to the non-convex model and semidefinite programming (SDP) in three simulation scenarios to validate its accuracy and efficiency.

Suggested Citation

  • Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Fernando Cruz-Peragón & Gerardo Alcalá, 2020. "Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization," Energies, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1703-:d:341210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    2. Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
    3. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    4. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
    5. Oscar Danilo Montoya & Walter Gil-González & Luis Grisales-Noreña & César Orozco-Henao & Federico Serra, 2019. "Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models," Energies, MDPI, vol. 12(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    3. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    4. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    5. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    6. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    7. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    8. Cristian Hoyos-Velandia & Lina Ramirez-Hurtado & Jaime Quintero-Restrepo & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt, 2022. "Cost Functions for Generation Dispatching in Microgrids for Non-Interconnected Zones in Colombia," Energies, MDPI, vol. 15(7), pages 1-14, March.
    9. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    10. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt & Harold R. Chamorro, 2022. "A Type-2 Fuzzy Controller to Enable the EFR Service from a Battery Energy Storage System," Energies, MDPI, vol. 15(7), pages 1-13, March.
    11. Wei Dai & Yang Gao & Hui Hwang Goh & Jiangyi Jian & Zhihong Zeng & Yuelin Liu, 2024. "A Non-Iterative Coordinated Scheduling Method for a AC-DC Hybrid Distribution Network Based on a Projection of the Feasible Region of Tie Line Transmission Power," Energies, MDPI, vol. 17(6), pages 1-20, March.
    12. Maria Carmela Di Piazza, 2022. "Recent Developments and Trends in Energy Management Systems for Microgrids," Energies, MDPI, vol. 15(21), pages 1-6, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Danilo Montoya & Walter Gil-González & Luis Grisales-Noreña & César Orozco-Henao & Federico Serra, 2019. "Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models," Energies, MDPI, vol. 12(23), pages 1-20, November.
    2. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    3. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    5. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    6. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    7. Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    8. Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
    9. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    10. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    11. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    12. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    13. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    14. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    15. Donghui Wang & Chunming Liu, 2019. "Combination Optimization Configuration Method of Capacitance and Resistance Devices for Suppressing DC Bias in Transformers," Energies, MDPI, vol. 12(9), pages 1-13, May.
    16. Ziquan Wang & Yaping Gao & Yan Gao, 2025. "Optimization of Distributed Photovoltaic Energy Storage System Double-Layer Planning in Low-Carbon Parks Considering Variable Operating Conditions and Complementary Synergy of Energy Storage Devices," Energies, MDPI, vol. 18(8), pages 1-35, April.
    17. Oscar Danilo Montoya & Jorge Alexander Alarcon-Villamil & Jesus C. Hernández, 2021. "Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses," Energies, MDPI, vol. 14(15), pages 1-22, July.
    18. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    19. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    20. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1703-:d:341210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.