IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3104-d765785.html
   My bibliography  Save this article

Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches

Author

Listed:
  • Mohsen Beigi

    (Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Tiran 8531911111, Iran)

  • Hossein Beigi Harchegani

    (Institute for Higher Education, Academic Center for Education, Culture, and Research (ACECR), Ahvaz 6139688839, Iran)

  • Mehdi Torki

    (Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Technical and Vocational University (TVU), Tehran 1435761137, Iran)

  • Mohammad Kaveh

    (Department of Petroleum Engineering, College of Engineering, Knowledge University, Erbil 44001, Iraq)

  • Mariusz Szymanek

    (Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, 20-612 Lubin, Poland)

  • Esmail Khalife

    (Department of Civil Engineering, Cihan University-Erbil, Kurdistan Region, Erbil 44001, Iraq)

  • Jacek Dziwulski

    (Department of Strategy and Business Planning, Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

Abstract

Artificial intelligence (AI) has become increasingly popular as a tool to model, identify, optimize, forecast, and control renewable energy systems. This work aimed to evaluate the capability of the artificial neural network (ANN) procedure to model and forecast solar power outputs of photovoltaic power systems (PVPSs) by using meteorological data. For this purpose, based on the literature review, important factors affecting energy generation in a PVPS were selected as inputs, and a recurrent neural network (RNN) architecture was established. After completing the trained network, the RNN capability was assessed to predict the energy output of the PVPS for days not included in the training database. The performance evaluation of the trained RNN revealed a regression value of 0.97774 for test data, whereas the RMSE and the mean actual output power for a sample day were 0.0248 MJ and 0.538 MJ, respectively. In addition to RMSE, an error histogram and regression plots obtained by MATLAB were employed to evaluate the network’s capability, and validation results represented a sufficient prediction accuracy of the trained RNN.

Suggested Citation

  • Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3104-:d:765785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    2. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    3. Beigi, Mohsen & Torki-Harchegani, Mehdi & Tohidi, Mojtaba, 2017. "Experimental and ANN modeling investigations of energy traits for rough rice drying," Energy, Elsevier, vol. 141(C), pages 2196-2205.
    4. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
    5. Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
    3. Chibuike Daraojimba & Moses Ikechukwu Obinyeluaku & Kehinde Mobolaji Abioye & Faith Ibukun Babalola & Noluthando Zamanjomane Mhlongo, 2023. "A Comprehensive Review Of Ai Applications In Finance For Accelerating Clean Energy Transition," Information Management and Computer Science (IMCS), Zibeline International Publishing, vol. 6(1), pages 41-49, November.
    4. Gobu Balraj & Aruldoss Albert Victoire & Jaikumar S. & Amalraj Victoire, 2022. "Variational mode decomposition combined fuzzy—Twin support vector machine model with deep learning for solar photovoltaic power forecasting," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongkyu Lee & Jinhwa Jeong & Sung Hoon Yoon & Young Tae Chae, 2019. "Improvement of Short-Term BIPV Power Predictions Using Feature Engineering and a Recurrent Neural Network," Energies, MDPI, vol. 12(17), pages 1-17, August.
    2. Rodríguez, Fermín & Fleetwood, Alice & Galarza, Ainhoa & Fontán, Luis, 2018. "Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control," Renewable Energy, Elsevier, vol. 126(C), pages 855-864.
    3. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    4. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    5. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    6. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    7. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    8. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    9. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    10. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    11. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    12. Huva, Robert & Verbois, Hadrien & Walsh, Wilfred, 2020. "Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model," Renewable Energy, Elsevier, vol. 147(P1), pages 663-671.
    13. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    14. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    15. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    16. Gandoman, Foad H. & Abdel Aleem, Shady H.E. & Omar, Noshin & Ahmadi, Abdollah & Alenezi, Faisal Q., 2018. "Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects," Renewable Energy, Elsevier, vol. 123(C), pages 793-805.
    17. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    18. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    19. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    20. Julián Urrego-Ortiz & J. Alejandro Martínez & Paola A. Arias & Álvaro Jaramillo-Duque, 2019. "Assessment and Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia," Energies, MDPI, vol. 12(22), pages 1-29, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3104-:d:765785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.