IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1271-d330399.html
   My bibliography  Save this article

Improvements in CO 2 Booster Architectures with Different Economizer Arrangements

Author

Listed:
  • J. Catalán-Gil

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

  • L. Nebot-Andrés

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

  • D. Sánchez

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

  • R. Llopis

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

  • R. Cabello

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

  • D. Calleja-Anta

    (Dep. of Mechanical Engineering and Construction, Jaume I University, Campus de Riu Sec s/n, E-12071, Castellón, Spain)

Abstract

CO 2 transcritical booster architectures are widely analyzed to be applied in centralized commercial refrigeration plants in consonance with the irrevocable phase-out of HFCs. Most of these analyses show the limitations of CO 2 cycles in terms of energy efficiency, especially in warm countries. From the literature, several improvements have been proposed to raise the booster efficiency in high ambient temperatures. The use of economizers is an interesting technique to reduce the temperature after the gas cooler and to improve the energy efficiency of transcritical CO 2 cycles. The economizer cools down the high pressure’s line of CO 2 by evaporating the same refrigerant extracted from another point of the facility. Depending on the extraction point, some configurations are possible. In this work, different booster architectures with economizers have been analyzed and compared. From the results, the combination of the economizer with the additional compressor allows obtaining energy savings of up to 8.5% in warm countries and up to 4% in cold countries with regard to the flash-by-pass arrangement and reduce the volumetric displacement required of the MT compressors by up to 37%.

Suggested Citation

  • J. Catalán-Gil & L. Nebot-Andrés & D. Sánchez & R. Llopis & R. Cabello & D. Calleja-Anta, 2020. "Improvements in CO 2 Booster Architectures with Different Economizer Arrangements," Energies, MDPI, vol. 13(5), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1271-:d:330399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chesi, Andrea & Esposito, Fabio & Ferrara, Giovanni & Ferrari, Lorenzo, 2014. "Experimental analysis of R744 parallel compression cycle," Applied Energy, Elsevier, vol. 135(C), pages 274-285.
    2. Sánchez, D. & Cabello, R. & Llopis, R. & Torrella, E., 2012. "Development and validation of a finite element model for water – CO2 coaxial gas-coolers," Applied Energy, Elsevier, vol. 93(C), pages 637-647.
    3. Purohit, Nilesh & Sharma, Vishaldeep & Sawalha, Samer & Fricke, Brian & Llopis, Rodrigo & Dasgupta, Mani Sankar, 2018. "Integrated supermarket refrigeration for very high ambient temperature," Energy, Elsevier, vol. 165(PA), pages 572-590.
    4. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    2. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    3. Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
    4. Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
    5. Lawrence Drojetzki & Mieczyslaw Porowski, 2023. "Outdoor Climate as a Decision Variable in the Selection of an Energy-Optimal Refrigeration System Based on Natural Refrigerants for a Supermarket," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    7. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    8. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    9. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    10. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    11. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michal & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model," Energy, Elsevier, vol. 144(C), pages 941-956.
    12. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    13. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    14. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    15. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    16. Francisco B. Lamas & Vítor A. F. Costa, 2022. "The Role of the Compressor Isentropic Efficiency in Non-Intrusive Refrigerant Side Characterization of Transcritical CO 2 Heat Pump Water Heaters," Clean Technol., MDPI, vol. 4(3), pages 1-9, August.
    17. Li, Hao & Gong, Xiufeng & Xu, Wenjie & Li, Minxia & Dang, Chaobin, 2020. "Effects of climate on the solar-powered R1234ze/CO2 cascade cycle for space cooling," Renewable Energy, Elsevier, vol. 153(C), pages 870-883.
    18. Biagio Bianchi & Giuseppe Cavone & Gianpaolo Cice & Antonia Tamborrino & Marialuisa Amodio & Imperatrice Capotorto & Pasquale Catalano, 2015. "CO 2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
    19. Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
    20. Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1271-:d:330399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.