IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i4p3734-3752d47476.html
   My bibliography  Save this article

CO 2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench

Author

Listed:
  • Biagio Bianchi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Giuseppe Cavone

    (Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona, 4, 70126 Bari, Italy)

  • Gianpaolo Cice

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Antonia Tamborrino

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Marialuisa Amodio

    (Department of Science of Agriculture, Food and Environment, University of Foggia, Via–Napoli, 25, 71122 Foggia, Italy)

  • Imperatrice Capotorto

    (Department of Science of Agriculture, Food and Environment, University of Foggia, Via–Napoli, 25, 71122 Foggia, Italy)

  • Pasquale Catalano

    (Department of Agriculture, Environment and Food, University of Molise, Via Francesco De Sanctis, 1, 86100 Campobasso, Italy)

Abstract

In order to define design criteria for CO 2 refrigeration systems to be used for agricultural products and foodstuff storage, a variable geometrical system was realized, with the goal of meeting a wide range of environmental and process conditions, such as producing low environmental impact and maintaining the highest Coefficient of Performance (COP), at the same time. This test-bench, at semi-industrial scale, was designed as a result of experimental tests carried out on Arugula. The storage tests showed that all samples stored in cold rooms with R.H. control showed a slight increase of weight but also small rot zones in all the boxes due to an excessive accumulation of water condensation; thus, the system may not have achieved conditions that RH requires in a given range, without reaching saturation condition. At the same time, the use of CO 2 must be adequately tested along its thermodynamic cycle, during steady state and/or transient conditions, imposing variable working conditions that can simulate plant starting phase or some striking conservation process, like those that characterize sausages. The designed plant will allow studying these specific performances and evaluate COP variation, according to environmental and plant operating conditions.

Suggested Citation

  • Biagio Bianchi & Giuseppe Cavone & Gianpaolo Cice & Antonia Tamborrino & Marialuisa Amodio & Imperatrice Capotorto & Pasquale Catalano, 2015. "CO 2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3734-3752:d:47476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/4/3734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/4/3734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sánchez, D. & Cabello, R. & Llopis, R. & Torrella, E., 2012. "Development and validation of a finite element model for water – CO2 coaxial gas-coolers," Applied Energy, Elsevier, vol. 93(C), pages 637-647.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonia Tamborrino & Claudio Perone & Filippo Catalano & Giacomo Squeo & Francesco Caponio & Biagio Bianchi, 2019. "Modelling Energy Consumption and Energy-Saving in High-Quality Olive Oil Decanter Centrifuge: Numerical Study and Experimental Validation," Energies, MDPI, vol. 12(13), pages 1-20, July.
    2. Claudio Perone & Biagio Bianchi & Filippo Catalano & Michela Orsino, 2022. "Experimental Evaluation of Functional and Energy Performance of Pneumatic Oenological Presses for High Quality White Wines," Sustainability, MDPI, vol. 14(13), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    2. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    3. Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
    4. Francisco B. Lamas & Vítor A. F. Costa, 2022. "The Role of the Compressor Isentropic Efficiency in Non-Intrusive Refrigerant Side Characterization of Transcritical CO 2 Heat Pump Water Heaters," Clean Technol., MDPI, vol. 4(3), pages 1-9, August.
    5. J. Catalán-Gil & L. Nebot-Andrés & D. Sánchez & R. Llopis & R. Cabello & D. Calleja-Anta, 2020. "Improvements in CO 2 Booster Architectures with Different Economizer Arrangements," Energies, MDPI, vol. 13(5), pages 1-29, March.
    6. Ge, Y.T. & Tassou, S.A. & Suamir, I.N., 2013. "Prediction and analysis of the seasonal performance of tri-generation and CO2 refrigeration systems in supermarkets," Applied Energy, Elsevier, vol. 112(C), pages 898-906.
    7. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    8. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3734-3752:d:47476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.