IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p908-d321913.html
   My bibliography  Save this article

Numerical Investigation on Bubble Distribution of a Multistage Centrifugal Pump Based on a Population Balance Model

Author

Listed:
  • Sina Yan

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Shuaihui Sun

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Xingqi Luo

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Senlin Chen

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Chenhao Li

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Jianjun Feng

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

Abstract

This work aimed to study the bubble distribution in a multiphase pump. A Euler-Euler inhomogeneous two-phase flow model coupled with a discrete particle population balance model (PBM) was used to simulate the whole flow channel of a three-stage gas-liquid two-phase centrifugal pump. Comparison of the computational fluid dynamic (CFD) simulation results with experimental data shows that the model can accurately predict the performance of the pump under various operating conditions. In addition, the liquid phase velocity distribution, gas-phase distribution, and pressure distribution of the second stage impeller at a 0.5 span of blade height under three typical working conditions were compared. Results show that the region with high local gas volume fraction (LGVF) mainly appears on the suction surface (SS) of the blade. With the increase in inlet gas volume fraction (IGVF), vortices and low velocity recirculation regions are generated at the impeller outlet and SS of the blade, the area with high LGVF increases, and gas–liquid separation occurs at the SS of the blade. The liquid phase flows out of the impeller at high velocity along the pressure surface of the blade, and the limited pressurization of fluid mainly happens at the impeller outlet. The average bubble size at the impeller outlet is the smallest while that at the impeller inlet is the largest. Under low IGVF conditions, bubbles tend to break into smaller ones, and the broken bubbles mainly concentrate at the blade pressure surface (PS) and the impeller outlet. Bubbles tend to coalesce into larger ones under high IGVF conditions. With the increase in IGVF, the bubble aggregation zone diffuses from the blade SS to the PS.

Suggested Citation

  • Sina Yan & Shuaihui Sun & Xingqi Luo & Senlin Chen & Chenhao Li & Jianjun Feng, 2020. "Numerical Investigation on Bubble Distribution of a Multistage Centrifugal Pump Based on a Population Balance Model," Energies, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:908-:d:321913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun Xu & Shuliang Cao & Takeshi Sano & Tokiya Wakai & Martino Reclari, 2019. "Experimental Investigation on Transient Pressure Characteristics in a Helico-Axial Multiphase Pump," Energies, MDPI, vol. 12(3), pages 1-20, January.
    2. Qiaorui Si & Gérard Bois & Minquan Liao & Haoyang Zhang & Qianglei Cui & Shouqi Yuan, 2019. "A Comparative Study on Centrifugal Pump Designs and Two-Phase Flow Characteristic under Inlet Gas Entrainment Conditions," Energies, MDPI, vol. 13(1), pages 1-25, December.
    3. Qiaorui Si & Gérard Bois & Qifeng Jiang & Wenting He & Asad Ali & Shouqi Yuan, 2018. "Investigation on the Handling Ability of Centrifugal Pumps under Air–Water Two-Phase Inflow: Model and Experimental Validation," Energies, MDPI, vol. 11(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boštjan Zajec & Leon Cizelj & Boštjan Končar, 2022. "Experimental Analysis of Flow Boiling in Horizontal Annulus—The Effect of Heat Flux on Bubble Size Distributions," Energies, MDPI, vol. 15(6), pages 1-12, March.
    2. Hang, Jianwei & Bai, Ling & Zhou, Ling & Jiang, Lei & Shi, Weidong & Agarwal, Ramesh, 2022. "Inter-stage energy characteristics of electrical submersible pump under gassy conditions," Energy, Elsevier, vol. 256(C).
    3. Shuaihui Sun & Pei Ren & Pengcheng Guo & Longgang Sun & Xiaobo Zheng, 2022. "Influence of the Gas Model on the Performance and Flow Field Prediction of a Gas–Liquid Two-Phase Hydraulic Turbine," Energies, MDPI, vol. 15(17), pages 1-18, August.
    4. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    2. Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
    3. Weihua Sun & Zhiyi Yu & Wenwu Zhang, 2022. "Effect of Shear-Thinning Property on the Energy Performance and Flow Field of an Axial Flow Pump," Energies, MDPI, vol. 15(7), pages 1-15, March.
    4. Qiaorui Si & Gérard Bois & Minquan Liao & Haoyang Zhang & Qianglei Cui & Shouqi Yuan, 2019. "A Comparative Study on Centrifugal Pump Designs and Two-Phase Flow Characteristic under Inlet Gas Entrainment Conditions," Energies, MDPI, vol. 13(1), pages 1-25, December.
    5. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    6. Artur J. Jaworski, 2019. "Special Issue “Fluid Flow and Heat Transfer”," Energies, MDPI, vol. 12(16), pages 1-4, August.
    7. Qing Guo & Kai Luo & Daijin Li & Chuang Huang & Kan Qin, 2021. "Effect of Operating Conditions on the Performance of Gas–Liquid Mixture Roots Pumps," Energies, MDPI, vol. 14(17), pages 1-23, August.
    8. Asad Ali & Jianping Yuan & Fanjie Deng & Biaobiao Wang & Liangliang Liu & Qiaorui Si & Noman Ali Buttar, 2021. "Research Progress and Prospects of Multi-Stage Centrifugal Pump Capability for Handling Gas–Liquid Multiphase Flow: Comparison and Empirical Model Validation," Energies, MDPI, vol. 14(4), pages 1-34, February.
    9. Huichuang Li & Wenwu Zhang & Liwei Hu & Baoshan Zhu & Fujun Wang, 2023. "Studies on Flow Characteristics of Gas–Liquid Multiphase Pumps Applied in Petroleum Transportation Engineering—A Review," Energies, MDPI, vol. 16(17), pages 1-24, August.
    10. Qiaorui Si & Haoyang Zhang & Gérard Bois & Jinfeng Zhang & Qianglei Cui & Shouqi Yuan, 2019. "Experimental Investigations on the Inner Flow Behavior of Centrifugal Pumps under Inlet Air-Water Two-Phase Conditions," Energies, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:908-:d:321913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.