IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015274.html
   My bibliography  Save this article

Inter-stage energy characteristics of electrical submersible pump under gassy conditions

Author

Listed:
  • Hang, Jianwei
  • Bai, Ling
  • Zhou, Ling
  • Jiang, Lei
  • Shi, Weidong
  • Agarwal, Ramesh

Abstract

Owing to the complex operational conditions of deep-sea or underground, the energy and flow characteristics in the electrical submersible pump (ESP) conditions are even more chaotic under gas-liquid flow, which degrades the energy conversion efficiency. At present, few studies have been carried out to demonstrate the difference between stages of ESP under gassy conditions. In this study, based on the Eulerian–Eulerian inhomogeneous model, an ESP with three stages was simulated to investigate the inter-stage differences in energy characteristics and flow patterns under both pure water and gas-liquid two-phase flow in detail. The simulation results are in good agreement with the experimental data. Gas phase distribution, external and internal characteristics in the ESP with three stages were analyzed at different flow rate with inlet gas volume fraction (IGVF) of 5%, 10%, and 15%. With the rise of IGVF, the degree of gas aggregation in the impellers and diffusers increases significantly, and the influence of the vortex formed by the gas concentration expands, and the differences vanish in gas distribution and flow trajectory between different flow channels. The proportion of gas in the flow channel is negatively correlated with the flow rate. Meanwhile, the variation law of head and efficiency under different inlet gas content conditions is fitted to the equation. The gas distribution pattern became further chaotic as the number of stages increases. The turbulence kinetic energy in the impeller is highly consistent with the gas aggregation pattern in terms of position distribution and change trend. At designed and best efficiency flowrate, the volume average of turbulence kinetic energy inside the second and third impeller is significantly higher than the first impeller. Overall, this study comprehensively reveals the gas phase distribution pattern, energy and internal flow characteristics in the ESP, which is helpful for the optimization design of such a pump and the improvement of the energy conversion efficiency under gassy condition.

Suggested Citation

  • Hang, Jianwei & Bai, Ling & Zhou, Ling & Jiang, Lei & Shi, Weidong & Agarwal, Ramesh, 2022. "Inter-stage energy characteristics of electrical submersible pump under gassy conditions," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015274
    DOI: 10.1016/j.energy.2022.124624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    2. Sina Yan & Shuaihui Sun & Xingqi Luo & Senlin Chen & Chenhao Li & Jianjun Feng, 2020. "Numerical Investigation on Bubble Distribution of a Multistage Centrifugal Pump Based on a Population Balance Model," Energies, MDPI, vol. 13(4), pages 1-15, February.
    3. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    4. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    5. Aydin, Hakki & Merey, Sukru, 2021. "Design of Electrical Submersible Pump system in geothermal wells: A case study from West Anatolia, Turkey," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    2. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    3. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    4. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    5. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    6. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    7. Yangyang Wei & Yuhui Shi & Weidong Shi & Bo Pan, 2022. "Numerical Analysis and Experimental Study of Unsteady Flow Characteristics in an Ultra-Low Specific Speed Centrifugal Pump," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    8. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    9. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    10. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    11. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    12. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
    13. Tang, Qinghong & Yu, An & Wang, Yongshuai & Tang, Yibo & Wang, Yifu, 2023. "Numerical analysis of vorticity transport and energy dissipation of inner-blade vortex in Francis turbine," Renewable Energy, Elsevier, vol. 203(C), pages 634-648.
    14. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    15. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    16. Karayel, G. Kubilay & Javani, Nader & Dincer, Ibrahim, 2022. "Effective use of geothermal energy for hydrogen production: A comprehensive application," Energy, Elsevier, vol. 249(C).
    17. Wu, TianXin & Wu, DengHao & Gao, ShuYu & Song, Yu & Ren, Yun & Mou, JieGang, 2023. "Multi-objective optimization and loss analysis of multistage centrifugal pumps," Energy, Elsevier, vol. 284(C).
    18. Shuaihui Sun & Pei Ren & Pengcheng Guo & Longgang Sun & Xiaobo Zheng, 2022. "Influence of the Gas Model on the Performance and Flow Field Prediction of a Gas–Liquid Two-Phase Hydraulic Turbine," Energies, MDPI, vol. 15(17), pages 1-18, August.
    19. Norouzi, Amir Mohammad & Pouranian, Fatemeh & Rabbani, Arash & Fowler, Neil & Gluyas, Jon & Niasar, Vahid & Ezekiel, Justin & Babaei, Masoud, 2023. "CO2-plume geothermal: Power net generation from 3D fluvial aquifers," Applied Energy, Elsevier, vol. 332(C).
    20. Luo, Xianwu & Ye, Weixiang & Huang, Renfang & Wang, Yiwei & Du, Tezhuan & Huang, Chenguang, 2020. "Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow," Renewable Energy, Elsevier, vol. 153(C), pages 1042-1052.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.