IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p65-d300658.html
   My bibliography  Save this article

A Comparative Study on Centrifugal Pump Designs and Two-Phase Flow Characteristic under Inlet Gas Entrainment Conditions

Author

Listed:
  • Qiaorui Si

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, Jiangsu, China)

  • Gérard Bois

    (LMFL, FRE CNRS 3723, Arts et Métiers ParisTech, 59046 Lille, Nord, France)

  • Minquan Liao

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, Jiangsu, China)

  • Haoyang Zhang

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, Jiangsu, China)

  • Qianglei Cui

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, Jiangsu, China)

  • Shouqi Yuan

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, Jiangsu, China)

Abstract

Capability for handling entrained gas is an important design consideration for centrifugal pumps used in petroleum, chemistry, nuclear applications. An experimental evaluation on their two phase performance is presented for two centrifugal pumps working under air-water mixture fluid conditions. The geometries of the two pumps are designed for the same flow rate and shut off head coefficient with the same impeller rotational speed. Overal pump performance and unsteady pressure pulsation information are obtained at different rotational speeds combined with various inlet air void fractions ( α 0 ) up to pump stop condition. As seen from the test results, pump 2 is able to deliver up to 10% two-phase mixtures before pump shut-off, whereas pump 1 is limited to 8%. In order to understand the physics of this flow phenomenon, a full three-dimensional unsteady Reynolds Average Navier-Stokes (3D-URANS) calculation using the Euler–Euler inhomogeneous method are carried out to study the two phase flow characteristics of the model pump after corresponding experimental verification. The internal flow characteristics inside the impeller and volute are physically described using the obtained air distribution, velocity streamline, vortex pattern and pressure pulsation results under different flow rates and inlet void fractions. Pump performances would deteriorate during pumping two-phase mixture fluid compared with single flow conditions due to the phase separating effect. Some physical explanation about performance improvements on handing maximum acceptable inlet two phase void fractions capability of centrifugal pumps are given.

Suggested Citation

  • Qiaorui Si & Gérard Bois & Minquan Liao & Haoyang Zhang & Qianglei Cui & Shouqi Yuan, 2019. "A Comparative Study on Centrifugal Pump Designs and Two-Phase Flow Characteristic under Inlet Gas Entrainment Conditions," Energies, MDPI, vol. 13(1), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:65-:d:300658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qifeng Jiang & Yaguang Heng & Xiaobing Liu & Weibin Zhang & Gérard Bois & Qiaorui Si, 2019. "A Review of Design Considerations of Centrifugal Pump Capability for Handling Inlet Gas-Liquid Two-Phase Flows," Energies, MDPI, vol. 12(6), pages 1-18, March.
    2. Qiaorui Si & Haoyang Zhang & Gérard Bois & Jinfeng Zhang & Qianglei Cui & Shouqi Yuan, 2019. "Experimental Investigations on the Inner Flow Behavior of Centrifugal Pumps under Inlet Air-Water Two-Phase Conditions," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Jianjun Zhu & Hong-Quan Zhang, 2018. "A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps," Energies, MDPI, vol. 11(1), pages 1-41, January.
    4. Qiaorui Si & Gérard Bois & Qifeng Jiang & Wenting He & Asad Ali & Shouqi Yuan, 2018. "Investigation on the Handling Ability of Centrifugal Pumps under Air–Water Two-Phase Inflow: Model and Experimental Validation," Energies, MDPI, vol. 11(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Guo & Kai Luo & Daijin Li & Chuang Huang & Kan Qin, 2021. "Effect of Operating Conditions on the Performance of Gas–Liquid Mixture Roots Pumps," Energies, MDPI, vol. 14(17), pages 1-23, August.
    2. Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
    3. Sina Yan & Shuaihui Sun & Xingqi Luo & Senlin Chen & Chenhao Li & Jianjun Feng, 2020. "Numerical Investigation on Bubble Distribution of a Multistage Centrifugal Pump Based on a Population Balance Model," Energies, MDPI, vol. 13(4), pages 1-15, February.
    4. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Ali & Jianping Yuan & Fanjie Deng & Biaobiao Wang & Liangliang Liu & Qiaorui Si & Noman Ali Buttar, 2021. "Research Progress and Prospects of Multi-Stage Centrifugal Pump Capability for Handling Gas–Liquid Multiphase Flow: Comparison and Empirical Model Validation," Energies, MDPI, vol. 14(4), pages 1-34, February.
    2. Qiaorui Si & Haoyang Zhang & Gérard Bois & Jinfeng Zhang & Qianglei Cui & Shouqi Yuan, 2019. "Experimental Investigations on the Inner Flow Behavior of Centrifugal Pumps under Inlet Air-Water Two-Phase Conditions," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    4. Kaijie Ye & Denghui He & Lin Zhao & Pengcheng Guo, 2022. "Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)," Energies, MDPI, vol. 15(21), pages 1-14, November.
    5. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    6. Qifeng Jiang & Yaguang Heng & Xiaobing Liu & Weibin Zhang & Gérard Bois & Qiaorui Si, 2019. "A Review of Design Considerations of Centrifugal Pump Capability for Handling Inlet Gas-Liquid Two-Phase Flows," Energies, MDPI, vol. 12(6), pages 1-18, March.
    7. Yaguang Heng & Yuming Han & Huiyu Zhang & Weibin Zhang & Gérard Bois & Qifeng Jiang & Zhengwei Wang & Xiaobing Liu, 2020. "Tesla Bladed Pump (Disc Bladed Pump) Preliminary Experimental Performance Analysis," Energies, MDPI, vol. 13(18), pages 1-13, September.
    8. Yang, Yang & Zhou, Ling & Hang, Jianwei & Du, Danyang & Shi, Weidong & He, Zhaoming, 2021. "Energy characteristics and optimal design of diffuser meridian in an electrical submersible pump," Renewable Energy, Elsevier, vol. 167(C), pages 718-727.
    9. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    10. Sina Yan & Shuaihui Sun & Xingqi Luo & Senlin Chen & Chenhao Li & Jianjun Feng, 2020. "Numerical Investigation on Bubble Distribution of a Multistage Centrifugal Pump Based on a Population Balance Model," Energies, MDPI, vol. 13(4), pages 1-15, February.
    11. Artur J. Jaworski, 2019. "Special Issue “Fluid Flow and Heat Transfer”," Energies, MDPI, vol. 12(16), pages 1-4, August.
    12. Qiaorui Si & Gérard Bois & Qifeng Jiang & Wenting He & Asad Ali & Shouqi Yuan, 2018. "Investigation on the Handling Ability of Centrifugal Pumps under Air–Water Two-Phase Inflow: Model and Experimental Validation," Energies, MDPI, vol. 11(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:65-:d:300658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.