IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p610-d315015.html
   My bibliography  Save this article

Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al 2 O 3 Catalyst

Author

Listed:
  • Jimin Zhu

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Ø, Denmark)

  • Samuel Simon Araya

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Ø, Denmark)

  • Xiaoti Cui

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Ø, Denmark)

  • Simon Lennart Sahlin

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Ø, Denmark)

  • Søren Knudsen Kær

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Ø, Denmark)

Abstract

Methanol as a hydrogen carrier can be reformed with steam over Cu/ZnO/Al 2 O 3 catalysts. In this paper a comprehensive pseudo-homogenous model of a multi-tubular packed-bed reformer has been developed to investigate the impact of operating conditions and geometric parameters on its performance. A kinetic Langmuir-Hinshelwood model of the methanol steam reforming process was proposed. In addition to the kinetic model, the pressure drop and the mass and heat transfer phenomena along the reactor were taken into account. This model was verified by a dynamic model in the platform of ASPEN. The diffusion effect inside catalyst particles was also estimated and accounted for by the effectiveness factor. The simulation results showed axial temperature profiles in both tube and shell side with different operating conditions. Moreover, the lower flow rate of liquid fuel and higher inlet temperature of thermal air led to a lower concentration of residual methanol, but also a higher concentration of generated CO from the reformer exit. The choices of operating conditions were limited to ensure a tolerable concentration of methanol and CO in H 2 -rich gas for feeding into a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack. With fixed catalyst load, the increase of tube number and decrease of tube diameter improved the methanol conversion, but also increased the CO concentration in reformed gas. In addition, increasing the number of baffle plates in the shell side increased the methanol conversion and the CO concentration.

Suggested Citation

  • Jimin Zhu & Samuel Simon Araya & Xiaoti Cui & Simon Lennart Sahlin & Søren Knudsen Kær, 2020. "Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al 2 O 3 Catalyst," Energies, MDPI, vol. 13(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:610-:d:315015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huajing & Xu, Chao & Yu, Hangyu & Wu, Hao & Jin, Fei & Xiao, Feng & Liao, Zhirong, 2022. "Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside," Energy, Elsevier, vol. 254(PB).
    2. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Giovanni Cinti & Vincenzo Liso & Simon Lennart Sahlin & Samuel Simon Araya, 2020. "System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Kiara Capreece Premlall & David Lokhat, 2020. "Reducing Energy Requirements in the Production of Acrylic Acid: Simulation and Design of a Multitubular Reactor Train," Energies, MDPI, vol. 13(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    2. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    3. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    4. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    5. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    6. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    7. Hyemin Song & Younghyeon Kim & Dongjin Yu & Byoung Jae Kim & Hyunjin Ji & Sangseok Yu, 2020. "A Computational Analysis of a Methanol Steam Reformer Using Phase Change Heat Transfer," Energies, MDPI, vol. 13(17), pages 1-14, August.
    8. Ribeirinha, P. & Alves, I. & Vázquez, F. Vidal & Schuller, G. & Boaventura, M. & Mendes, A., 2017. "Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 468-477.
    9. Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
    10. Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
    11. Radenahmad, Nikdalila & Afif, Ahmed & Petra, Pg Iskandar & Rahman, Seikh M.H. & Eriksson, Sten-G. & Azad, Abul K., 2016. "Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1347-1358.
    12. Batet, David & Zohra, Fatema T. & Kristensen, Simon B. & Andreasen, Søren J. & Diekhöner, Lars, 2020. "Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack," Applied Energy, Elsevier, vol. 277(C).
    13. Hyunyong Lee & Inchul Jung & Gilltae Roh & Youngseung Na & Hokeun Kang, 2020. "Comparative Analysis of On-Board Methane and Methanol Reforming Systems Combined with HT-PEM Fuel Cell and CO 2 Capture/Liquefaction System for Hydrogen Fueled Ship Application," Energies, MDPI, vol. 13(1), pages 1-25, January.
    14. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    15. Eyal, Amnon & Tartakovsky, Leonid, 2020. "Second-law analysis of the reforming-controlled compression ignition," Applied Energy, Elsevier, vol. 263(C).
    16. Cha, Junyoung & Park, Yongha & Brigljević, Boris & Lee, Boreum & Lim, Dongjun & Lee, Taeho & Jeong, Hyangsoo & Kim, Yongmin & Sohn, Hyuntae & Mikulčić, Hrvoje & Lee, Kyung Moon & Nam, Dong Hoon & Lee,, 2021. "An efficient process for sustainable and scalable hydrogen production from green ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    18. Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
    19. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
    20. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Tan, Peng & Xu, Haoran & Chen, Bin & Yang, Fusheng & Zhang, Zaoxiao & Ni, Meng, 2020. "Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:610-:d:315015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.