IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p297-d306153.html
   My bibliography  Save this article

Effect of Oxidants on Syngas Synthesis from Biogas over 3 wt % Ni-Ce-MgO-ZrO 2 /Al 2 O 3 Catalyst

Author

Listed:
  • Danbee Han

    (Department of Environmental and Energy Engineering, University of Suwon, Hwaseong-si 18323, Korea)

  • Yunji Kim

    (Department of Environmental and Energy Engineering, University of Suwon, Hwaseong-si 18323, Korea)

  • Wonjun Cho

    (Bio Friends Inc., Yuseong-gu, Daejeon 34028, Korea)

  • Youngsoon Baek

    (Department of Environmental and Energy Engineering, University of Suwon, Hwaseong-si 18323, Korea)

Abstract

The utilization of fossil fuels has led to a gradual increase in greenhouse gas emissions, which have accelerated global climate change. Therefore, there is a growing interest in renewable energy sources and technologies. Biogas has gained considerable attention as an abundant renewable energy resource. Common biogases include anaerobic digestion gas and landfill gas, which can be used to synthesize high-value-added syngas through catalytic reforming. Because syngas (CO and H 2 ) is synthesized at high reaction temperature, carbon is generated by the Boudouard reaction from CO and CH 4 cracking; thus, C blocks the pores and surface of the catalyst, thereby causing catalyst deactivation. In this study, a simulation was performed to measure the CH 4 and CO 2 conversion rates and the syngas yield for different ratios of CO 2 /CH 4 (0.5, 1, and 2). The simulation results showed that the optimum CO 2 /CH 4 ratio is 0.5; therefore, biogas reforming over the 3 wt% Ni/Ce-MgO-ZrO 2 /Al 2 O 3 catalyst was performed under these conditions. CH 4 and CO 2 conversion rates and the syngas yield were evaluated by varying the R values ( R = (CO 2 + O 2 )/CH 4 ) on the effect of CO 2 and O 2 oxidants of CH 4 . In addition, steam was added during biogas reforming to elucidate the effect of steam addition on CO 2 and CH 4 conversion rates. The durability and activity of the catalyst after 200-h biogas reforming were evaluated under the optimal conditions of R = 0.7, 850 °C, and 1 atm.

Suggested Citation

  • Danbee Han & Yunji Kim & Wonjun Cho & Youngsoon Baek, 2020. "Effect of Oxidants on Syngas Synthesis from Biogas over 3 wt % Ni-Ce-MgO-ZrO 2 /Al 2 O 3 Catalyst," Energies, MDPI, vol. 13(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:297-:d:306153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danbee Han & Seungcheol Shin & Haneul Jung & Wonjun Cho & Youngsoon Baek, 2023. "Hydrogen Production by Steam Reforming of Pyrolysis Oil from Waste Plastic over 3 wt.% Ni/Ce-Zr-Mg/Al 2 O 3 Catalyst," Energies, MDPI, vol. 16(6), pages 1-14, March.
    2. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.
    2. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    3. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    4. Hoseinzade, Leila & Adams, Thomas A., 2019. "Techno-economic and environmental analyses of a novel, sustainable process for production of liquid fuels using helium heat transfer," Applied Energy, Elsevier, vol. 236(C), pages 850-866.
    5. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    6. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    7. Siang, T.J. & Jalil, A.A. & Abdulrasheed, A.A. & Hambali, H.U. & Nabgan, Walid, 2020. "Thermodynamic equilibrium study of altering methane partial oxidation for Fischer–Tropsch synfuel production," Energy, Elsevier, vol. 198(C).
    8. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    9. Evangelos Delikonstantis & Marco Scapinello & Georgios D. Stefanidis, 2017. "Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation," Energies, MDPI, vol. 10(9), pages 1-27, September.
    10. Zhang, Baoxu & Chen, Yumin & Zhang, Bing & Peng, Ruifeng & Lu, Qiancheng & Yan, Weijie & Yu, Bo & Liu, Fang & Zhang, Junying, 2022. "Cyclic performance of coke oven gas - Steam reforming with assistance of steel slag derivates for high purity hydrogen production," Renewable Energy, Elsevier, vol. 184(C), pages 592-603.
    11. Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
    12. Mosayebi, Amir & Eghbal Ahmadi, Mohammad Hosein, 2022. "Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis," Energy, Elsevier, vol. 261(PB).
    13. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    14. Kwon, Byeong Wan & Oh, Joo Hyeng & Kim, Ghun Sik & Yoon, Sung Pil & Han, Jonghee & Nam, Suk Woo & Ham, Hyung Chul, 2018. "The novel perovskite-type Ni-doped Sr0.92Y0.08TiO3 as a reforming biogas (CH4+CO2) for H2 production," Applied Energy, Elsevier, vol. 227(C), pages 213-219.
    15. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    16. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:297-:d:306153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.