IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6693-d464356.html
   My bibliography  Save this article

Analysis of the Influence of Reducing the Duration of a Thermal Response Test in a Water-Filled Geothermal Borehole Located in Spain

Author

Listed:
  • Ignacio Martín Nieto

    (Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain)

  • Cristina Sáez Blázquez

    (Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain)

  • Arturo Farfán Martín

    (Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain)

  • Diego González-Aguilera

    (Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain)

Abstract

Usually thermal response tests are restricted to big geothermal projects; the high investment makes them less suitable for designing domestic low-enthalpy geothermal energy systems. The work here presented aims to study the influence of time reduction in thermal response tests on their precision. Due to the importance of the correct assessment of the thermal characterization of the ground for any kind of geothermal system, time reduction in this essay could make it more affordable to be implemented in some domestic systems. A thermal response test has been implemented, and several time intervals of the test have been considered in order to obtain different results for the thermal conductivity of the ground. The mentioned results have been then compared and also the domestic geothermal systems designed from them by the use of the geothermal software GES-CAL. Results have shown that, in some cases (our testing borehole has some singular characteristics), a significant time reduction in the data acquisition process of the thermal response test does not compromise seriously the precision of the results.

Suggested Citation

  • Ignacio Martín Nieto & Cristina Sáez Blázquez & Arturo Farfán Martín & Diego González-Aguilera, 2020. "Analysis of the Influence of Reducing the Duration of a Thermal Response Test in a Water-Filled Geothermal Borehole Located in Spain," Energies, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6693-:d:464356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yildirim, Nurdan & Toksoy, Macit & Gokcen, Gulden, 2010. "Piping network design of geothermal district heating systems: Case study for a university campus," Energy, Elsevier, vol. 35(8), pages 3256-3262.
    2. Fabio Minchio & Gabriele Cesari & Claudio Pastore & Marco Fossa, 2020. "Experimental Hydration Temperature Increase in Borehole Heat Exchangers during Thermal Response Tests for Geothermal Heat Pump Design," Energies, MDPI, vol. 13(13), pages 1-16, July.
    3. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    4. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    5. Blázquez, Cristina Sáez & Martín, Arturo Farfán & Nieto, Ignacio Martín & García, Pedro Carrasco & Sánchez Pérez, Luis Santiago & González-Aguilera, Diego, 2017. "Analysis and study of different grouting materials in vertical geothermal closed-loop systems," Renewable Energy, Elsevier, vol. 114(PB), pages 1189-1200.
    6. Cristina Sáez Blázquez & Ignacio Martín Nieto & Arturo Farfán Martín & Diego González-Aguilera & Pedro Carrasco García, 2019. "Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 12(9), pages 1-14, May.
    7. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego Gonzalez-Aguilera, 2017. "Measuring of Thermal Conductivities of Soils and Rocks to Be Used in the Calculation of A Geothermal Installation," Energies, MDPI, vol. 10(6), pages 1-19, June.
    8. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    9. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego González-Aguilera, 2018. "Economic and Environmental Analysis of Different District Heating Systems Aided by Geothermal Energy," Energies, MDPI, vol. 11(5), pages 1-17, May.
    10. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
    11. Marcotte, D. & Pasquier, P. & Sheriff, F. & Bernier, M., 2010. "The importance of axial effects for borehole design of geothermal heat-pump systems," Renewable Energy, Elsevier, vol. 35(4), pages 763-770.
    12. Blázquez, Cristina Sáez & Verda, Vittorio & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2020. "Analysis and optimization of the design parameters of a district groundwater heat pump system in Turin, Italy," Renewable Energy, Elsevier, vol. 149(C), pages 374-383.
    13. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    15. Johnsson, Josef & Adl-Zarrabi, Bijan, 2019. "Modelling and evaluation of groundwater filled boreholes subjected to natural convection," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Hao Deng & Xin Zhang, 2022. "Influence of Different Heat Loads and Durations on the Field Thermal Response Test," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    2. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    3. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    4. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    5. Cristina Sáez Blázquez & Laura Piedelobo & Jesús Fernández-Hernández & Ignacio Martín Nieto & Arturo Farfán Martín & Susana Lagüela & Diego González-Aguilera, 2020. "Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-22, March.
    6. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    7. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    8. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    9. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.
    10. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    11. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    12. Anjan Rao Puttige & Staffan Andersson & Ronny Östin & Thomas Olofsson, 2020. "A Novel Analytical-ANN Hybrid Model for Borehole Heat Exchanger," Energies, MDPI, vol. 13(23), pages 1-19, November.
    13. Du, Yufang & Li, Min & Li, Yong & Lai, Alvin CK., 2023. "Tikhonov regularization stabilizes multi-parameter estimation of geothermal heat exchangers," Energy, Elsevier, vol. 262(PB).
    14. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Ignacio Martín Nieto & Pedro Carrasco García & Cristina Sáez Blázquez & Arturo Farfán Martín & Diego González-Aguilera & Javier Carrasco García, 2020. "Geophysical Prospecting for Geothermal Resources in the South of the Duero Basin (Spain)," Energies, MDPI, vol. 13(20), pages 1-22, October.
    16. Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
    17. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    18. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    19. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    20. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6693-:d:464356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.