IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp374-383.html
   My bibliography  Save this article

Analysis and optimization of the design parameters of a district groundwater heat pump system in Turin, Italy

Author

Listed:
  • Blázquez, Cristina Sáez
  • Verda, Vittorio
  • Nieto, Ignacio Martín
  • Martín, Arturo Farfán
  • González-Aguilera, Diego

Abstract

District heating systems are gaining an increasing importance in the space heating and the production of Domestic Hot Water. Focusing on the geothermal energy as the energy supply of these systems, an optimal design could involve an increased number of geothermal district heating installations. This research presents two different designs of a groundwater heat pump system from the application of initial real data. Both designs differ in the heat pumps: 1 installation in scenario 1 and 3 installations in scenario 2. The procedure includes the calculation of all the required geothermal parameters in both assumptions. Optimization of the drilling schema is carried out using COMSOL Multiphysics software. Technical and economic results reveal that scenario 1 is the most suitable option for the study case here presented. Global initial investment is lower in scenario 1 the same as the annual operational costs since the coefficient of performance of the heat pumps in this scenario 1 is slightly higher than the one of each module of scenario 2.

Suggested Citation

  • Blázquez, Cristina Sáez & Verda, Vittorio & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2020. "Analysis and optimization of the design parameters of a district groundwater heat pump system in Turin, Italy," Renewable Energy, Elsevier, vol. 149(C), pages 374-383.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:374-383
    DOI: 10.1016/j.renene.2019.12.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    2. Park, Byeong-Hak & Bae, Gwang-Ok & Lee, Kang-Kun, 2015. "Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field and numerical study," Renewable Energy, Elsevier, vol. 83(C), pages 270-279.
    3. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taha Sezer & Abubakar Kawuwa Sani & Rao Martand Singh & Liang Cui, 2023. "Laboratory Investigation of Impact of Injection–Abstraction Rate and Groundwater Flow Velocity on Groundwater Heat Pump Performance," Energies, MDPI, vol. 16(19), pages 1-19, October.
    2. Luo, Jin & Li, Peijia & Yan, Zezhou & Wu, Yungang, 2022. "An integrated 3D method to assess the application potential of GWHP systems in fluvial deposit areas," Renewable Energy, Elsevier, vol. 187(C), pages 631-644.
    3. Ignacio Martín Nieto & Cristina Sáez Blázquez & Arturo Farfán Martín & Diego González-Aguilera, 2020. "Analysis of the Influence of Reducing the Duration of a Thermal Response Test in a Water-Filled Geothermal Borehole Located in Spain," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    5. Taha Sezer & Abubakar Kawuwa Sani & Rao Martand Singh & Liang Cui, 2023. "Numerical Investigation and Optimization of a District-Scale Groundwater Heat Pump System," Energies, MDPI, vol. 16(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dusseault, Bernard & Pasquier, Philippe, 2021. "Usage of the net present value-at-risk to design ground-coupled heat pump systems under uncertain scenarios," Renewable Energy, Elsevier, vol. 173(C), pages 953-971.
    2. Nicholson, Sarah R. & Kober, Leya R. & Atefrad, Pedram & Mwesigye, Aggrey & Dworkin, Seth B., 2021. "The influence of geometry on the performance of a helical steel pile as a geo-exchange system," Renewable Energy, Elsevier, vol. 172(C), pages 714-727.
    3. Al-Habaibeh, Amin & Athresh, Anup P. & Parker, Keith, 2018. "Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system," Applied Energy, Elsevier, vol. 211(C), pages 393-402.
    4. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    5. Bruno Piga & Alessandro Casasso & Francesca Pace & Alberto Godio & Rajandrea Sethi, 2017. "Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models," Energies, MDPI, vol. 10(9), pages 1-19, September.
    6. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    7. Wang, Guiling & Wang, Wanli & Luo, Jin & Zhang, Yuhao, 2019. "Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 392-421.
    8. Archan Shah & Moncef Krarti & Joe Huang, 2022. "Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-25, January.
    9. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    10. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    11. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    12. Alaie, Omid & Maddahian, Reza & Heidarinejad, Ghassem, 2021. "Investigation of thermal interaction between shallow boreholes in a GSHE using the FLS-STRCM model," Renewable Energy, Elsevier, vol. 175(C), pages 1137-1150.
    13. Simona Adrinek & Mitja Janža & Mihael Brenčič, 2023. "Impact of Open-Loop Systems on Groundwater Temperature in NE Slovenia," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    14. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    15. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    16. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    17. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    18. Borja Badenes & Miguel Ángel Mateo Pla & Teresa Magraner & Javier Soriano & Javier F. Urchueguía, 2020. "Theoretical and Experimental Cost–Benefit Assessment of Borehole Heat Exchangers (BHEs) According to Working Fluid Flow Rate," Energies, MDPI, vol. 13(18), pages 1-29, September.
    19. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    20. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:374-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.