IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5656-d436673.html
   My bibliography  Save this article

Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System

Author

Listed:
  • Denghao Zhu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jun Deng

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jinqiu Wang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Shuo Wang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Hongyu Zhang

    (Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China)

  • Jakob Andert

    (Mechatronic Systems for Combustion Engines, RWTH Aachen University, 52074 Aachen, Germany)

  • Liguang Li

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China)

Abstract

The application of advanced technologies for engine efficiency improvement and emissions reduction also increase the occurrence possibility of abnormal combustions such as incomplete combustion, misfire, knock or pre-ignition. Novel promising combustion modes, which are basically dominated by chemical reaction kinetics show a major difficulty in combustion control. The challenge in precise combustion control is hard to overcome by the traditional engine map-based control method because it cannot monitor the combustion state of each cycle, hence, real-time cycle-resolved in-cylinder combustion diagnosis and control are required. In the past, cylinder pressure and ion current sensors, as the two most commonly used sensors for in-cylinder combustion diagnosis and control, have enjoyed a seemingly competitive relationship, so all related researches only use one of the sensors. However, these two sensors have their own unique features. In this study, the idea is to combine the information obtained from both sensors. At first, two kinds of ion current detection system are comprehensively introduced and compared at the hardware level and signal level. The most promising variant (the DC-Power ion current detection system) is selected for the subsequent experiments. Then, the concept of ion current/cylinder pressure cooperative combustion diagnosis and control system is illustrated and implemented on the engine prototyping control unit. One application case of employing this system for homogenous charge compression ignition abnormal combustion control and its stability improvement is introduced. The results show that a combination of ion current and cylinder pressure signals can provide richer and also necessary information for combustion control. Finally, ion current and cylinder pressure signals are employed as inputs of artificial neural network (ANN) models for combustion prediction. The results show that the combustion prediction performance is better when the inputs are a combination of both signals, instead of using only one of them. This offline analysis proves the feasibility of using an ANN-based model whose inputs are a combination of ion current and pressure signals for better prediction accuracy.

Suggested Citation

  • Denghao Zhu & Jun Deng & Jinqiu Wang & Shuo Wang & Hongyu Zhang & Jakob Andert & Liguang Li, 2020. "Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System," Energies, MDPI, vol. 13(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5656-:d:436673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wick, Maximilian & Bedei, Julian & Andert, Jakob & Lehrheuer, Bastian & Pischinger, Stefan & Nuss, Eugen, 2020. "Dynamic measurement of HCCI combustion with self-learning of experimental space limitations," Applied Energy, Elsevier, vol. 262(C).
    2. Wick, Maximilian & Bedei, Julian & Gordon, David & Wouters, Christian & Lehrheuer, Bastian & Nuss, Eugen & Andert, Jakob & Koch, Charles Robert, 2019. "In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection," Applied Energy, Elsevier, vol. 240(C), pages 1061-1074.
    3. Seokwon Cho & Jihwan Park & Chiheon Song & Sechul Oh & Sangyul Lee & Minjae Kim & Kyoungdoug Min, 2019. "Prediction Modeling and Analysis of Knocking Combustion using an Improved 0D RGF Model and Supervised Deep Learning," Energies, MDPI, vol. 12(5), pages 1-25, March.
    4. Yang, Zhuyong & Miganakallu, Niranjan & Miller, Tyler & Worm, Jeremy & Naber, Jeffrey & Roth, David, 2020. "Comparing methods for improving spark-ignited engine efficiency: Over-expansion with multi-link cranktrain and high compression ratio with late intake valve closing," Applied Energy, Elsevier, vol. 262(C).
    5. Chao, Yuedong & Chen, Xinye & Deng, Jun & Hu, Zongjie & Wu, Zhijun & Li, Liguang, 2018. "Additional injection timing effects on first cycle during gasoline engine cold start based on ion current detection system," Applied Energy, Elsevier, vol. 221(C), pages 55-66.
    6. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    7. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    8. Kumar, Madan & Shen, Tielong, 2017. "In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines," Energy, Elsevier, vol. 120(C), pages 106-116.
    9. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    10. Vittorio Ravaglioli & Carlo Bussi, 2019. "Model-Based Pre-Ignition Diagnostics in a Race Car Application," Energies, MDPI, vol. 12(12), pages 1-12, June.
    11. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
    13. Ansari, Ehsan & Shahbakhti, Mahdi & Naber, Jeffrey, 2018. "Optimization of performance and operational cost for a dual mode diesel-natural gas RCCI and diesel combustion engine," Applied Energy, Elsevier, vol. 231(C), pages 549-561.
    14. Hüseyin Emre Doğan & Osman Akın Kutlar & Majid Javadzadehkalkhoran & Abdurrahman Demirci, 2019. "Investigation of Burn Duration and NO Emission in Lean Mixture with CNG and Gasoline," Energies, MDPI, vol. 12(23), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinqiu & Bedei, Julian & Deng, Jun & Andert, Jakob & Zhu, Denghao & Li, Liguang, 2021. "Detection of transient low-temperature combustion characteristics by ion current – The missing link for homogeneous charge compression ignition control?," Applied Energy, Elsevier, vol. 283(C).
    2. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    4. Haruki Tajima & Takuya Tomidokoro & Takeshi Yokomori, 2022. "Deep Learning for Knock Occurrence Prediction in SI Engines," Energies, MDPI, vol. 15(24), pages 1-14, December.
    5. Kumano, Kengo & Akagi, Yoshihiko & Matohara, Shinya & Uchise, Yoshifumi & Yamasaki, Yudai, 2020. "Using an ion-current sensor integrated in the ignition system to detect precursory phenomenon of pre-ignition in gasoline engines," Applied Energy, Elsevier, vol. 275(C).
    6. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    7. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    8. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    9. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    10. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    11. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    12. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    13. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    16. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    17. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    18. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    19. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    20. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5656-:d:436673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.