IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9315-d997708.html
   My bibliography  Save this article

Deep Learning for Knock Occurrence Prediction in SI Engines

Author

Listed:
  • Haruki Tajima

    (Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Kanagawa, Japan)

  • Takuya Tomidokoro

    (Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan)

  • Takeshi Yokomori

    (Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan)

Abstract

This research aims to predict knock occurrences by deep learning using in-cylinder pressure history from experiments and to elucidate the period in pressure history that is most important for knock prediction. Supervised deep learning was conducted using in-cylinder pressure history as an input and the presence or absence of knock in each cycle as a label. The learning process was conducted with and without cost-sensitive approaches to examine the influence of an imbalance in the numbers of knock and non-knock cycles. Without the cost-sensitive approach, the prediction accuracy exceeded 90% and both the precision and the recall were about 70%. In addition, the trade-off between precision and recall could be controlled by adjusting the weights of knock and non-knock cycles in the cost-sensitive approach. Meanwhile, it was found that including the pressure history of the previous cycle did not influence the classification accuracy, suggesting little relationship between the combustion behavior of the previous cycle and knock occurrence in the following cycle. Moreover, learning the pressure history up to 10° CA before a knock improved the classification accuracy, whereas learning it within 10° CA before a knock did not noticeably affect the accuracy. Finally, deep learning was conducted using data, including multiple operating conditions. The present study revealed that deep learning can effectively predict knock occurrences using in-cylinder pressure history.

Suggested Citation

  • Haruki Tajima & Takuya Tomidokoro & Takeshi Yokomori, 2022. "Deep Learning for Knock Occurrence Prediction in SI Engines," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9315-:d:997708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    2. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    3. Achilles Kefalas & Andreas B. Ofner & Gerhard Pirker & Stefan Posch & Bernhard C. Geiger & Andreas Wimmer, 2021. "Detection of Knocking Combustion Using the Continuous Wavelet Transformation and a Convolutional Neural Network," Energies, MDPI, vol. 14(2), pages 1-19, January.
    4. Seokwon Cho & Jihwan Park & Chiheon Song & Sechul Oh & Sangyul Lee & Minjae Kim & Kyoungdoug Min, 2019. "Prediction Modeling and Analysis of Knocking Combustion using an Improved 0D RGF Model and Supervised Deep Learning," Energies, MDPI, vol. 12(5), pages 1-25, March.
    5. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
    6. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    7. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    8. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.
    9. Yusaf, Talal F. & Buttsworth, D.R. & Saleh, Khalid H. & Yousif, B.F., 2010. "CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network," Applied Energy, Elsevier, vol. 87(5), pages 1661-1669, May.
    10. Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
    11. Domínguez-Sáez, Aida & Rattá, Giuseppe A. & Barrios, Carmen C., 2018. "Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using Artificial Neural Network and Symbolic Regression," Energy, Elsevier, vol. 149(C), pages 675-683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini, M. & Chitsaz, I., 2023. "Knock probability determination employing convolutional neural network and IGTD algorithm," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    2. Sun, Ping & Zhang, Jufang & Dong, Wei & Li, Decheng & Yu, Xiumin, 2023. "Prediction of oxygen-enriched combustion and emission performance on a spark ignition engine using artificial neural networks," Applied Energy, Elsevier, vol. 348(C).
    3. Aliakbari, Karim & Ebrahimi-Moghadam, Amir & Pahlavanzadeh, Mohammadsadegh & Moradi, Reza, 2023. "Performance characteristics and exhaust emissions of a single-cylinder diesel engine for different fuels: Experimental investigation and artificial intelligence network," Energy, Elsevier, vol. 284(C).
    4. Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
    5. Rajkumar, Sundararajan & Das, Arnab & Thangaraja, Jeyaseelan, 2022. "Integration of artificial neural network, multi-objective genetic algorithm and phenomenological combustion modelling for effective operation of biodiesel blends in an automotive engine," Energy, Elsevier, vol. 239(PA).
    6. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    7. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    8. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    9. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    10. Sakthivel, G. & Sivaraja, C.M. & Ikua, Bernard W., 2019. "Prediction OF CI engine performance, emission and combustion parameters using fish oil as a biodiesel by fuzzy-GA," Energy, Elsevier, vol. 166(C), pages 287-306.
    11. Dey, Suman & Reang, Narath Moni & Majumder, Arindam & Deb, Madhujit & Das, Pankaj Kumar, 2020. "A hybrid ANN-Fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend," Energy, Elsevier, vol. 202(C).
    12. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    13. Denghao Zhu & Jun Deng & Jinqiu Wang & Shuo Wang & Hongyu Zhang & Jakob Andert & Liguang Li, 2020. "Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System," Energies, MDPI, vol. 13(21), pages 1-21, October.
    14. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    15. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    16. Dhahad, Hayder Abed & Hasan, Ahmed Mudheher & Chaichan, Miqdam Tariq & Kazem, Hussein A., 2022. "Prognostic of diesel engine emissions and performance based on an intelligent technique for nanoparticle additives," Energy, Elsevier, vol. 238(PB).
    17. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Manieniyan, V. & Vinodhini, G. & Senthilkumar, R. & Sivaprakasam, S., 2016. "Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation," Energy, Elsevier, vol. 114(C), pages 603-612.
    19. Achilles Kefalas & Andreas B. Ofner & Gerhard Pirker & Stefan Posch & Bernhard C. Geiger & Andreas Wimmer, 2021. "Detection of Knocking Combustion Using the Continuous Wavelet Transformation and a Convolutional Neural Network," Energies, MDPI, vol. 14(2), pages 1-19, January.
    20. Tian, Junjian & Liu, Yu & Bi, Haobo & Li, Fengyu & Bao, Lin & Han, Kai & Zhou, Wenliang & Ni, Zhanshi & Lin, Qizhao, 2022. "Experimental study on the spray characteristics of octanol diesel and prediction of spray tip penetration by ANN model," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9315-:d:997708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.