IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp1061-1074.html
   My bibliography  Save this article

In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection

Author

Listed:
  • Wick, Maximilian
  • Bedei, Julian
  • Gordon, David
  • Wouters, Christian
  • Lehrheuer, Bastian
  • Nuss, Eugen
  • Andert, Jakob
  • Koch, Charles Robert

Abstract

Homogeneous charge compression ignition offers a high potential for the reduction of CO2 and NOx raw emissions; however, its use entails problems that are associated with low combustion stability, especially at the limits of the operating range. The recirculation of exhaust gases inside the combustion chamber by using a negative valve overlap leads to a strong coupling of consecutive cycles. The cyclic coupling induces phases of unstable operation after the occurrence of stochastic outlier cycles with misfire or incomplete combustion. These unstable phases are marked by reduced efficiency and increased emissions.

Suggested Citation

  • Wick, Maximilian & Bedei, Julian & Gordon, David & Wouters, Christian & Lehrheuer, Bastian & Nuss, Eugen & Andert, Jakob & Koch, Charles Robert, 2019. "In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection," Applied Energy, Elsevier, vol. 240(C), pages 1061-1074.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:1061-1074
    DOI: 10.1016/j.apenergy.2019.01.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahri, Bahram & Aziz, Azhar Abdul & Shahbakhti, Mahdi & Muhamad Said, Mohd Farid, 2013. "Understanding and detecting misfire in an HCCI engine fuelled with ethanol," Applied Energy, Elsevier, vol. 108(C), pages 24-33.
    2. Broekaert, Stijn & De Cuyper, Thomas & De Paepe, Michel & Verhelst, Sebastian, 2017. "Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine," Applied Energy, Elsevier, vol. 205(C), pages 1141-1150.
    3. Hunicz, Jacek & Mikulski, Maciej, 2018. "Investigation of the thermal effects of fuel injection into retained residuals in HCCI engine," Applied Energy, Elsevier, vol. 228(C), pages 1966-1984.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wick, Maximilian & Bedei, Julian & Andert, Jakob & Lehrheuer, Bastian & Pischinger, Stefan & Nuss, Eugen, 2020. "Dynamic measurement of HCCI combustion with self-learning of experimental space limitations," Applied Energy, Elsevier, vol. 262(C).
    2. Denghao Zhu & Jun Deng & Jinqiu Wang & Shuo Wang & Hongyu Zhang & Jakob Andert & Liguang Li, 2020. "Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System," Energies, MDPI, vol. 13(21), pages 1-21, October.
    3. Wang, Jinqiu & Bedei, Julian & Deng, Jun & Andert, Jakob & Zhu, Denghao & Li, Liguang, 2021. "Detection of transient low-temperature combustion characteristics by ion current – The missing link for homogeneous charge compression ignition control?," Applied Energy, Elsevier, vol. 283(C).
    4. Wu, Jingtao & Zhang, Zhehao & Kang, Zhe & Deng, Jun & Li, Liguang & Wu, Zhijun, 2022. "An assessment methodology for fuel/water consumption co-optimization of a gasoline engine with port water injection," Applied Energy, Elsevier, vol. 310(C).
    5. David C. Gordon & Armin Norouzi & Alexander Winkler & Jakub McNally & Eugen Nuss & Dirk Abel & Mahdi Shahbakhti & Jakob Andert & Charles R. Koch, 2022. "End-to-End Deep Neural Network Based Nonlinear Model Predictive Control: Experimental Implementation on Diesel Engine Emission Control," Energies, MDPI, vol. 15(24), pages 1-23, December.
    6. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    2. Mikulski, Maciej & Balakrishnan, Praveen Ramanujam & Hunicz, Jacek, 2019. "Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming," Applied Energy, Elsevier, vol. 254(C).
    3. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    4. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    5. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    6. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    7. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    8. Yue, Zongyu & Wang, Xiaosa & Liu, Haifeng & Li, Bowen & Yao, Mingfa, 2024. "Exploring the application of oxy-fuel combustion to methanol spark ignition engines," Applied Energy, Elsevier, vol. 367(C).
    9. Calam, Alper & Solmaz, Hamit & Yılmaz, Emre & İçingür, Yakup, 2019. "Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine," Energy, Elsevier, vol. 168(C), pages 1208-1216.
    10. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    11. Decan, Gilles & Broekaert, Stijn & Lucchini, Tommaso & D’Errico, Gianluca & Vierendeels, Jan & Verhelst, Sebastian, 2018. "Evaluation of wall heat flux calculation methods for CFD simulations of an internal combustion engine under both motored and HCCI operation," Applied Energy, Elsevier, vol. 232(C), pages 451-461.
    12. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    13. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    14. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).
    15. Hunicz, Jacek & Mikulski, Maciej & Geca, Michal S. & Rybak, Arkadiusz, 2020. "An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap," Applied Energy, Elsevier, vol. 257(C).
    16. Ezoji, Hosein & Ajarostaghi, Seyed Soheil Mousavi, 2020. "Thermodynamic-CFD analysis of waste heat recovery from homogeneous charge compression ignition (HCCI) engine by Recuperative organic Rankine Cycle (RORC): Effect of operational parameters," Energy, Elsevier, vol. 205(C).
    17. Michał Głogowski & Przemysław Kubiak & Szymon Szufa & Piotr Piersa & Łukasz Adrian & Mateusz Krukowski, 2021. "The Use of the Fourier Series to Analyze the Shaping of Thermodynamic Processes in Heat Engines," Energies, MDPI, vol. 14(8), pages 1-23, April.
    18. Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
    19. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    20. Zhou, Xianjie & Chen, Zheng & Zou, Peng & Liu, Jingping & Duan, Xiongbo & Qin, Tao & Zhang, Shiheng & Shen, Dazi, 2020. "Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:1061-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.