IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5343-d427660.html
   My bibliography  Save this article

Crop Residue Removal: Assessment of Future Bioenergy Generation Potential and Agro-Environmental Limitations Based on a Case Study of Ukraine

Author

Listed:
  • Sergii Kyryzyuk

    (State Institution “Institute of Economics and Forecasting of the National Academy of Sciences of Ukraine”, Panasa Myrnoho 26, 01011 Kyiv, Ukraine)

  • Vitaliy Krupin

    (Institute of Rural and Agricultural Development, Polish Academy of Sciences, Nowy Świat 72, 00-330 Warsaw, Poland)

  • Olena Borodina

    (State Institution “Institute of Economics and Forecasting of the National Academy of Sciences of Ukraine”, Panasa Myrnoho 26, 01011 Kyiv, Ukraine)

  • Adam Wąs

    (Institute of Economics and Finances, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland)

Abstract

This study assesses the bioenergy generation potential of crop residues in Ukraine for the year 2030. Projections of agricultural development are made based on the Global Biosphere Management Model (GLOBIOM) and verified against available Agricultural Member State Modeling (AGMEMOD) results in regard to the six main crops cultivated in Ukraine (wheat, barley, corn, sunflower, rape and soya). Two agricultural development scenarios are assessed (traditional and innovative), facilitating the projection of future crop production volumes and yields for the selected crops. To improve precision in defining agro-environmental limitations (the share of crop residues necessary to be kept on the fields to maintain soil fertility for the continuous cultivation of crops), yield-dependent residue-to-product ratios (RPRs) were applied and the levels of available soil nutrients for regions of Ukraine (in regard to nitrogen, phosphorus, potassium and humus) were estimated. The results reveal the economically feasible future bioenergy generation potential of crop residues in Ukraine, equaling 3.6 Mtoe in the traditional agricultural development scenario and 10.7 Mtoe in the innovative development scenario. The projections show that, within the latter scenario, wheat, corn and barley combined are expected to provide up to 81.3% of the bioenergy generation potential of crop residues.

Suggested Citation

  • Sergii Kyryzyuk & Vitaliy Krupin & Olena Borodina & Adam Wąs, 2020. "Crop Residue Removal: Assessment of Future Bioenergy Generation Potential and Agro-Environmental Limitations Based on a Case Study of Ukraine," Energies, MDPI, vol. 13(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5343-:d:427660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    2. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    3. Usmani, Rahil Akhtar, 2020. "Potential for energy and biofuel from biomass in India," Renewable Energy, Elsevier, vol. 155(C), pages 921-930.
    4. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    5. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    6. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    7. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    8. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    9. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nestor Shpak & Ihor Kulyniak & Maryana Gvozd & Jolita Vveinhardt & Natalia Horbal, 2021. "Formulation of Development Strategies for Regional Agricultural Resource Potential: The Ukrainian Case," Resources, MDPI, vol. 10(6), pages 1-30, June.
    2. Rashad Huseynov & Naila Aliyeva & Valery Bezpalov & Denis Syromyatnikov, 2024. "Cluster analysis as a tool for improving the performance of agricultural enterprises in the agro-industrial sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 4119-4132, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    2. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    3. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    4. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    5. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    6. Akhtar Usmani, Rahil & Khan, Akram A., 2025. "Regional outlooks of biomass potential for transport sector energy security," Renewable Energy, Elsevier, vol. 242(C).
    7. Dale, Virginia H. & Kline, Keith L. & Buford, Marilyn A. & Volk, Timothy A. & Tattersall Smith, C. & Stupak, Inge, 2016. "Incorporating bioenergy into sustainable landscape designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1158-1171.
    8. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    9. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    10. Usmani, Rahil Akhtar, 2020. "Potential for energy and biofuel from biomass in India," Renewable Energy, Elsevier, vol. 155(C), pages 921-930.
    11. Tina D. Beuchelt & Michael Nassl, 2019. "Applying a Sustainable Development Lens to Global Biomass Potentials," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    12. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    13. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    14. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    15. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    16. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    17. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    18. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    19. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5343-:d:427660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.