IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5205-d424300.html
   My bibliography  Save this article

Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow

Author

Listed:
  • Ladislav Suk

    (Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno, Czech Republic)

  • Taron Petrosyan

    (Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic)

  • Kamil Stevanka

    (Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic)

  • Daniel Vlcek

    (Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holesovickach 2, 18000 Prague 8, Czech Republic)

  • Pavel Gejdos

    (Brno University of Technology, CEITEC-Central European Institute of Technology, Purkynova 656/123, 61200 Brno, Czech Republic)

Abstract

Steady state flow boiling experiments were carried out on several heated tubes with outer diameter 9.14 mm at outlet pressures 120, 200 and 300 kPa, inlet temperatures 64, 78 and 91 °C and approximately 400, 500, 600 and 800 kg/(m 2 ·s) mass flux entering the vertically aligned test annulus until critical heat flux (CHF) was reached. The tubes were made of Inconel 625 with a length of 400 mm. The Inconel tubes were tested in three different modifications as smooth, abraded with 150 grit sandpaper and bead blasted. Multiple experiments were repeated on the same specimen to investigate the effect of surface characteristic changes (i.e., wettability, roughness and oxide layer morphology) on the occurrence of CHF. Despite the changes in initial wettability, the CHF dependency was not clearly observed, however, the changes in roughness led to an increase in CHF. The total number of 115 experimental runs were collected and the results were also compared with other literature experimental data.

Suggested Citation

  • Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5205-:d:424300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    2. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    3. Zhi-Chuan Sun & Xiang Ma & Lian-Xiang Ma & Wei Li & David J. Kukulka, 2019. "Flow Boiling Heat Transfer Characteristics in Horizontal, Three-Dimensional Enhanced Tubes," Energies, MDPI, vol. 12(5), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaofei Yin & Zhonglin Yang & Kexin Zhang & Yingli Xue & Chao Dang, 2023. "Heat Transfer of Water Flow Boiling in Nanostructured Open Microchannels," Energies, MDPI, vol. 16(3), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
    2. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    3. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    4. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    5. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    6. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    7. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    8. Liang Chen & Xingchen Li & Runfeng Xiao & Kunpeng Lv & Xue Yang & Yu Hou, 2020. "Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio," Energies, MDPI, vol. 13(11), pages 1-21, May.
    9. Janusz T. Cieśliński & Katarzyna Ronewicz, 2021. "Burnout Investigation of Small Diameter Tubes Immersed in Nanofluids," Energies, MDPI, vol. 14(13), pages 1-26, June.
    10. Yongseok Jeon & Hoon Kim & Jae Hwan Ahn & Sanghoon Kim, 2020. "Effects of Nozzle Exit Position on Condenser Outlet Split Ejector-Based R600a Household Refrigeration Cycle," Energies, MDPI, vol. 13(19), pages 1-12, October.
    11. Łukasz J. Orman & Norbert Radek & Jacek Pietraszek & Marcin Szczepaniak, 2020. "Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces," Energies, MDPI, vol. 13(11), pages 1-19, May.
    12. Alexander V. Fedoseev & Mikhail V. Salnikov & Anastasiya E. Ostapchenko & Anton S. Surtaev, 2022. "Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer," Energies, MDPI, vol. 15(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5205-:d:424300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.