IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3888-d583883.html
   My bibliography  Save this article

Burnout Investigation of Small Diameter Tubes Immersed in Nanofluids

Author

Listed:
  • Janusz T. Cieśliński

    (Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland)

  • Katarzyna Ronewicz

    (AIC S.A., Rdestowa 41, 81577 Gdynia, Poland)

Abstract

This paper deals with research into pool boiling critical heat flux (CHF) of water–Al 2 O 3 , water–TiO 2 and water–Cu nanofluids on horizontal stainless steel tubes. The experiments were conducted under atmospheric pressure. Nanoparticles were tested at concentrations of 0.001%, 0.01%, 0.1% and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. Although dispersants were not used to stabilize the suspension, the solutions tested showed satisfactory stability. Experimental measurements were performed with stainless steel tubes of three outside diameters: 1.6, 3 and 5 mm. Enhancement of CHF was observed to be independent of the concentration and material of the nanoparticles and tube diameter, with simultaneous heat transfer degradation. Built up during the boiling process, nanolayers improve substantially the heating surface wettability. A correlation is suggested for the CHF prediction during pool boiling of nanofluids.

Suggested Citation

  • Janusz T. Cieśliński & Katarzyna Ronewicz, 2021. "Burnout Investigation of Small Diameter Tubes Immersed in Nanofluids," Energies, MDPI, vol. 14(13), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3888-:d:583883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3888-:d:583883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.