IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8204-d962575.html
   My bibliography  Save this article

Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer

Author

Listed:
  • Alexander V. Fedoseev

    (Institute of Thermophysics SB RAS, Lavrentyev Ave. 1, Novosibirsk 630090, Russia)

  • Mikhail V. Salnikov

    (Institute of Thermophysics SB RAS, Lavrentyev Ave. 1, Novosibirsk 630090, Russia)

  • Anastasiya E. Ostapchenko

    (Institute of Thermophysics SB RAS, Lavrentyev Ave. 1, Novosibirsk 630090, Russia)

  • Anton S. Surtaev

    (Institute of Thermophysics SB RAS, Lavrentyev Ave. 1, Novosibirsk 630090, Russia
    Physics Department, Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia)

Abstract

To study the processes of boiling on a smooth surface with contrast wettability, a hybrid model was developed based on Lattice Boltzmann method and heat transfer equation. The model makes it possible to describe the phenomena of natural convection, nucleate boiling, and transition to film boiling, and, thus, to study heat transfer and the development of crisis phenomena in a wide range of surface superheats and surface wetting characteristics. To find the optimal configuration of the biphilic surface, at the first stage a numerical simulation was carried out for a single lyophobic zone on a lyophilic surface. The dependences of the bubble departure frequency and the departure diameter of the bubble on the width of the lyophobic zone were obtained, and its optimal size was determined. At the next stage, the boiling process on an extended surface was studied in the presence of several lyophobic zones of a given size with different distances between them. It is shown that in the region of moderate surface superheat, the intensity of heat transfer on biphilic surfaces can be several times (more than 4) higher compared to surfaces with homogeneous wettability. Based on numerical calculations, an optimal configuration of the biphilic surface with the ratios of the lyophobic zones’ width of the order of 0.16 and the distance between the lyophobic zones in the range of 0.9–1.3 to the bubble departure diameter was found.

Suggested Citation

  • Alexander V. Fedoseev & Mikhail V. Salnikov & Anastasiya E. Ostapchenko & Anton S. Surtaev, 2022. "Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer," Energies, MDPI, vol. 15(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8204-:d:962575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
    2. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    3. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    4. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    5. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    6. Liang Chen & Xingchen Li & Runfeng Xiao & Kunpeng Lv & Xue Yang & Yu Hou, 2020. "Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio," Energies, MDPI, vol. 13(11), pages 1-21, May.
    7. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.
    8. Łukasz J. Orman & Norbert Radek & Jacek Pietraszek & Marcin Szczepaniak, 2020. "Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces," Energies, MDPI, vol. 13(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8204-:d:962575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.