IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4896-d415641.html
   My bibliography  Save this article

Water Heating and Operational Mode Switching Effects on the Performance of a Multifunctional Heat Pump

Author

Listed:
  • Win Jet Luo

    (Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Kun Ying Li

    (Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Jeng Min Huang

    (Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

  • Chong Kai Yu

    (Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)

Abstract

In this study, a multifunctional air and water source heat pump system was developed with a parallel refrigerant piping arrangement, which possessed six operational functions: space cooling (SC), space heating (SH), water heating (WH), water cooling (WC) and two composite operational modes. The two composite operational modes were the SC/WH mode and the SH/WH mode. The performance of the multifuctional heat pump system under different ambient conditions was investigated based on the testing standards of CNS 14464 and CNS 15466. In this study, the effect of the direct water heating (DWH) and circulating water heating (CWH) methods on the performance was investigated. It was found that the water heating performance of the system by the DWH method is better than that of the system by the CWH method. The water heating capacity and COP w,h of the DWH method can be improvement by 2.6% to 22.1% and 2.9% to 50.8%, respectively. Moreover, this study developed a refrigerant pressure balance method to achieve an effective steady state of the refrigerant pressure after operational mode switching. By the refrigerant pressure balance method, the required time to attain the steady state could be greatly reduced—by 50%. However, the deviation of the refrigerant mass flow rate between the refrigerant pressure balance method and the refrigerant pump down method after operational mode switching ranged from 0.15% to 7.6%.

Suggested Citation

  • Win Jet Luo & Kun Ying Li & Jeng Min Huang & Chong Kai Yu, 2020. "Water Heating and Operational Mode Switching Effects on the Performance of a Multifunctional Heat Pump," Energies, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4896-:d:415641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Ji, Jie & Pei, Gang & Chow, Tin-tai & He, Wei & Zhang, Aifeng & Dong, Jun & Yi, Hua, 2005. "Performance of multi-functional domestic heat-pump system," Applied Energy, Elsevier, vol. 80(3), pages 307-326, March.
    3. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    4. Hongzhi Liu & Katsunori Nagano & Takao Katsura & Yue Han, 2020. "Experimental Investigation on a Vapor Injection Heat Pump System with a Single-Stage Compressor," Energies, MDPI, vol. 13(12), pages 1-19, June.
    5. Win-Jet Luo & Dini Faridah & Fikri Rahmat Fasya & Yu-Sheng Chen & Fikri Hizbul Mulki & Utami Nuri Adilah, 2019. "Performance Enhancement of Hybrid Solid Desiccant Cooling Systems by Integrating Solar Water Collectors in Taiwan," Energies, MDPI, vol. 12(18), pages 1-18, September.
    6. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    7. Pauli Hiltunen & Sanna Syri, 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources," Energies, MDPI, vol. 13(14), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Win-Jet Luo & Cheng-Yan Lin & Nai-Feng Wu & Zhi-Qun Xu, 2020. "Performance Enhancement of a Sludge Continuous Feed Heat Pump Drying System by Air Deflectors and Auxiliary Cooling Subsystems," Energies, MDPI, vol. 13(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    2. Wang, Qin & He, Wei & Liu, Yuqian & Liang, Guofeng & Li, Jiarong & Han, Xiaohong & Chen, Guangming, 2012. "Vapor compression multifunctional heat pumps in China: A review of configurations and operational modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6522-6538.
    3. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    4. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    5. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    6. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    7. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    8. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    9. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    10. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    11. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    12. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Teen-Hang Meen & Wenbing Zhao & Cheng-Fu Yang, 2020. "Special Issue on Selected Papers from IEEE ICKII 2019," Energies, MDPI, vol. 13(8), pages 1-5, April.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Linas Gelažanskas & Kelum A. A. Gamage, 2016. "Distributed Energy Storage Using Residential Hot Water Heaters," Energies, MDPI, vol. 9(3), pages 1-13, February.
    16. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    17. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    18. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    19. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    20. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4896-:d:415641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.