IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4649-d410206.html
   My bibliography  Save this article

Modeling and Simulation of a Hybrid System of Solar Panels and Wind Turbines for the Supply of Autonomous Electrical Energy to Organic Architectures

Author

Listed:
  • Daniel Icaza

    (GIRVyP Group Reserch, Faculty of Electrical Engineering, Catholic University of Cuenca, Cuenca 010111, Ecuador
    PHD Student at the University of Leon, 24007 León, Spain.)

  • David Borge-Diez

    (Department of Electrical, Systems and Automation Engineering, University of Leon, 24007 León, Spain)

  • Santiago Pulla Galindo

    (GIRVyP Group Reserch, Faculty of Electrical Engineering, Catholic University of Cuenca, Cuenca 010111, Ecuador
    PHD Student at the University of Leon, 24007 León, Spain.)

  • Carlos Flores-Vázquez

    (GIRVyP Group Reserch, Faculty of Electrical Engineering, Catholic University of Cuenca, Cuenca 010111, Ecuador)

Abstract

In this research, the modeling, simulation, and analysis of the energy conversion equations that describe the behavior of a hybrid photovoltaic and wind turbine system that supplies electrical energy to an average organic architecture is performed. Organic constructions have a philosophy that seeks to understand and integrate into the site, taking advantage of the natural potentials and their resources of the surrounding areas so that they form part of a unified and correlated composition. The rooms in these buildings are designed similar to a bean, inspired by the uterus of a mother and her child who are comfortable, at rest, and alive. We are left with the task of spreading this research to integrate its energy potential from the surroundings and transform it into autonomous electrical energy. In this article, a numerical model based on the fundamental equations was developed and coded, and the results compared with experimental data with a real airplane-type system located in a remote area of Ecuador. The model is intended to be used as an optimization and design tool for such hybrid systems applied to organic constructions. After an error analysis it was determined that this model predicted quite interesting results compared to the experimental data under various conditions. It is important to indicate that this analysis has been carried out so that in the future, these power generation systems can be exploited and applied more efficiently in areas far from the public electricity grid.

Suggested Citation

  • Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2020. "Modeling and Simulation of a Hybrid System of Solar Panels and Wind Turbines for the Supply of Autonomous Electrical Energy to Organic Architectures," Energies, MDPI, vol. 13(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4649-:d:410206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    2. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    3. Guillermo Valencia & Aldair Benavides & Yulineth Cárdenas, 2019. "Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region," Energies, MDPI, vol. 12(11), pages 1-19, June.
    4. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    5. Fátima Calderón-Vargas & David Asmat-Campos & Anselmo Carretero-Gómez, 2019. "Sustainable Tourism and Renewable Energy: Binomial for Local Development in Cocachimba, Amazonas, Peru," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    6. Ponce-Jara, M.A. & Castro, M. & Pelaez-Samaniego, M.R. & Espinoza-Abad, J.L. & Ruiz, E., 2018. "Electricity sector in Ecuador: An overview of the 2007–2017 decade," Energy Policy, Elsevier, vol. 113(C), pages 513-522.
    7. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    8. Iulia Stamatescu & Nicoleta Arghira & Ioana Făgărăşan & Grigore Stamatescu & Sergiu Stelian Iliescu & Vasile Calofir, 2017. "Decision Support System for a Low Voltage Renewable Energy System," Energies, MDPI, vol. 10(1), pages 1-15, January.
    9. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    10. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    11. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    12. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    6. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    7. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    8. Md. Sanwar Hossain & Khondoker Ziaul Islam & Abu Jahid & Khondokar Mizanur Rahman & Sarwar Ahmed & Mohammed H. Alsharif, 2020. "Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    9. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    10. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    11. Luis Ramirez Camargo & Felix Nitsch & Katharina Gruber & Javier Valdes & Jane Wuth & Wolfgang Dorner, 2019. "Potential Analysis of Hybrid Renewable Energy Systems for Self-Sufficient Residential Use in Germany and the Czech Republic," Energies, MDPI, vol. 12(21), pages 1-17, November.
    12. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    14. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    15. Ould Bilal, B. & Sambou, V. & Ndiaye, P.A. & Kébé, C.M.F. & Ndongo, M., 2010. "Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)," Renewable Energy, Elsevier, vol. 35(10), pages 2388-2390.
    16. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    17. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    18. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    19. Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
    20. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4649-:d:410206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.