IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3801-d389080.html
   My bibliography  Save this article

A Novel Two-Zone Thermodynamic Model for Spark-Ignition Engines Based on an Idealized Thermodynamic Process

Author

Listed:
  • Yuanfeng Wang

    (Institute of Internal Combustion Engines and Thermodynamics, Graz University of Technology, Inffeldgasse 25, A-8010 Graz, Austria)

Abstract

The thermodynamic model is a valuable simulation tool for developing combustion engines. The most widely applied thermodynamic models of spark-ignition engines are the single-zone model and the two-zone model. Compared to the single-zone model, the two-zone model offers more detailed in-cylinder thermodynamic conditions, but its governing equations are numerically stiffer, therefore it is restricted when applied in computationally intensive scenarios. To reduce the two-zone model’s stiffness, this paper isolates an idealized thermodynamic process in the unburned zone and describes this idealized thermodynamic process by an algebraic equation. Assisted with this idealized thermodynamic process, this paper builds a novel two-zone model for spark-ignition engines, whose governing equations are simplified to a set of two ordinary differential equations accompanied by a set of three algebraic equations. Benchmarked against the single-zone model and conventional two-zone model, the novel two-zone model is formed and validated by experimental results, and its stiffness is quantitatively evaluated by linearizing its governing equations at simulation steps. The results show that the novel two-zone model inherits the conventional two-zone model’s ability to estimate both zones’ state variables highly accurately while its simplified structure reduces its stiffness down to the level of the single-zone model, accelerating the computation speed.

Suggested Citation

  • Yuanfeng Wang, 2020. "A Novel Two-Zone Thermodynamic Model for Spark-Ignition Engines Based on an Idealized Thermodynamic Process," Energies, MDPI, vol. 13(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3801-:d:389080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maroteaux, Fadila & Saad, Charbel, 2015. "Combined mean value engine model and crank angle resolved in-cylinder modeling with NOx emissions model for real-time Diesel engine simulations at high engine speed," Energy, Elsevier, vol. 88(C), pages 515-527.
    2. Maroteaux, Fadila & Saad, Charbel, 2013. "Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model," Energy, Elsevier, vol. 57(C), pages 641-652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    2. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    3. Giglio, Veniero & di Gaeta, Alessandro, 2020. "Novel regression models for wiebe parameters aimed at 0D combustion simulation in spark ignition engines," Energy, Elsevier, vol. 210(C).
    4. Katrašnik, Tomaž, 2016. "Innovative 0D transient momentum based spray model for real-time simulations of CI engines," Energy, Elsevier, vol. 112(C), pages 494-508.
    5. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    6. Bo Liu & Fuwu Yan & Jie Hu & Richard Fiifi Turkson & Feng Lin, 2016. "Modeling and Multi-Objective Optimization of NO x Conversion Efficiency and NH 3 Slip for a Diesel Engine," Sustainability, MDPI, vol. 8(5), pages 1-13, May.
    7. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Wan, Peng & Liu, Bolan & Li, Ben & Liu, Fanshuo & Zhang, Junwei & Fan, Wenhao & Tang, Jingxian, 2023. "Engine modelling architecture study for hybrid electric vehicle diagnosis application," Energy, Elsevier, vol. 282(C).
    9. Maroteaux, Fadila & Saad, Charbel, 2015. "Combined mean value engine model and crank angle resolved in-cylinder modeling with NOx emissions model for real-time Diesel engine simulations at high engine speed," Energy, Elsevier, vol. 88(C), pages 515-527.
    10. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    11. Katrašnik, Tomaž, 2016. "An advanced real-time capable mixture controlled combustion model," Energy, Elsevier, vol. 95(C), pages 393-403.
    12. Eunhee Ko & Jungsoo Park, 2019. "Diesel Mean Value Engine Modeling Based on Thermodynamic Cycle Simulation Using Artificial Neural Network," Energies, MDPI, vol. 12(14), pages 1-17, July.
    13. Yongming Feng & Haiyan Wang & Ruifeng Gao & Yuanqing Zhu, 2019. "A Zero-Dimensional Mixing Controlled Combustion Model for Real Time Performance Simulation of Marine Two-Stroke Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-19, May.
    14. Hu, Deng & Wang, Hechun & Wang, Binbin & Shi, Mingwei & Duan, Baoyin & Wang, Yinyan & Yang, Chuanlei, 2022. "Calibration of 0-D combustion model applied to dual-fuel engine," Energy, Elsevier, vol. 261(PB).
    15. Vélez Godiño, José Antonio & Torres García, Miguel & Jiménez-Espadafor Aguilar, Francisco José, 2022. "Experimental analysis of late direct injection combustion mode in a compression-ignition engine fuelled with biodiesel/diesel blends," Energy, Elsevier, vol. 239(PA).
    16. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    17. Huabing Wen & Yue Yu & Jingrui Li & Changchun Xu & Haiguo Jing & Jianhua Shen, 2023. "Numerical Investigation on the Influence of Injection Location and Injection Strategy on a High-Pressure Direct Injection Diesel/Methanol Dual-Fuel Engine," Energies, MDPI, vol. 16(11), pages 1-26, June.
    18. Myung, Cha-Lee & Jang, Wonwook & Kwon, Sangil & Ko, Jinyoung & Jin, Dongyoung & Park, Simsoo, 2017. "Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles," Energy, Elsevier, vol. 132(C), pages 356-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3801-:d:389080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.