IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3737-d387014.html
   My bibliography  Save this article

Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers

Author

Listed:
  • Aneta Sapińska-Śliwa

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Tomasz Sliwa

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Kazimierz Twardowski

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Krzysztof Szymski

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Andrzej Gonet

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Paweł Żuk

    (Laboratory of Geoenergetics, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This work concerns borehole heat exchangers and their testing using apparatus for thermal response tests. In the theoretical part of the article, an equation was derived from the known equation of heat flow, on which the interpretation of the thermal response test was based. The practical part presents the results of several measurements taken in the AGH Laboratory of Geoenergetics. They were aimed at examining the potential heat exchange capacity between the heat carrier and rock mass. Measurement results in the form of graphs are shown in relation to the examined, briefly described wells. Result analysis made it possible to draw conclusions regarding the interpretation of the thermal response test. The method of averaging the measurement results was subjected to further study. The measuring apparatus recorded data at a frequency of one second, however such accuracy was too large to be analyzed efficiently. Therefore, an average of every 1 min, every 10 min, and every 60 min was proposed. The conclusions stemming from the differences in the values of effective thermal conductivity in the borehole heat exchanger, resulting from different data averaging, were described. In the case of three borehole heat exchangers, ground properties were identical. The effective thermal conductivity λ eff was shown to depend on various borehole heat exchanger (BHE) designs, heat carrier flow geometry, and grout parameters. It is important to consider the position of the pipes relative to each other. As shown in the charts, the best (the highest) effective thermal conductivity λ eff occurred in BHE-1 with a coaxial construction. At the same time, this value was closest to the theoretical value of thermal conductivity of rocks λ , determined on the basis of literature. The standard deviation and the coefficient of variation confirmed that the effective thermal conductivity λ eff , calculated for different time intervals, showed little variation in value. The values of effective thermal conductivity λ eff for each time interval for the same borehole exchanger were similar in value. The lowest values of effective thermal conductivity λ eff most often appeared for analysis with averaging every 60 min, and the highest—for analysis with averaging every 1 min. For safety reasons, when designing (number of BHEs), safer values should be taken for analysis, i.e., lower, averaging every 60 min.

Suggested Citation

  • Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3737-:d:387014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    2. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    3. Sliwa, Tomasz & Kotyza, Jaroslaw, 2003. "Application of existing wells as ground heat source for heat pumps in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 3-8, January.
    4. Weisong Zhou & Peng Pei & Dingyi Hao & Chen Wang, 2020. "A Numerical Study on the Performance of Ground Heat Exchanger Buried in Fractured Rock Bodies," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    6. Zhang, Changxing & Chen, Ping & Liu, Yufeng & Sun, Shicai & Peng, Donggen, 2015. "An improved evaluation method for thermal performance of borehole heat exchanger," Renewable Energy, Elsevier, vol. 77(C), pages 142-151.
    7. Ah-Yun Yoon & Hyun-Koo Kang & Seung-II Moon, 2020. "Optimal Price Based Demand Response of HVAC Systems in Commercial Buildings Considering Peak Load Reduction," Energies, MDPI, vol. 13(4), pages 1-20, February.
    8. Gustafsson, A.-M. & Westerlund, L., 2010. "Multi-injection rate thermal response test in groundwater filled borehole heat exchanger," Renewable Energy, Elsevier, vol. 35(5), pages 1061-1070.
    9. Tomasz Sliwa & Marc A. Rosen, 2015. "Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review," Sustainability, MDPI, vol. 7(10), pages 1-22, September.
    10. Angelo Zarrella & Giuseppe Emmi & Samantha Graci & Michele De Carli & Matteo Cultrera & Giorgia Dalla Santa & Antonio Galgaro & David Bertermann & Johannes Müller & Luc Pockelé & Giulia Mezzasalma & D, 2017. "Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods," Energies, MDPI, vol. 10(6), pages 1-18, June.
    11. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    12. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    13. Franco, A. & Moffat, R. & Toledo, M. & Herrera, P., 2016. "Numerical sensitivity analysis of thermal response tests (TRT) in energy piles," Renewable Energy, Elsevier, vol. 86(C), pages 985-992.
    14. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    15. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2020. "Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials," Energies, MDPI, vol. 13(19), pages 1-30, October.
    3. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    3. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
    5. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    6. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    7. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    8. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    9. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    10. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    11. Serageldin, Ahmed A. & Nagano, Katsunori, 2024. "A novel oscillatory thermal response test method for efficient characterization of ground thermal properties: Methodology and data analysis," Renewable Energy, Elsevier, vol. 230(C).
    12. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    13. Du, Yufang & Li, Min & Li, Yong & Lai, Alvin CK., 2023. "Tikhonov regularization stabilizes multi-parameter estimation of geothermal heat exchangers," Energy, Elsevier, vol. 262(PB).
    14. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).
    16. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    17. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    18. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    19. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    20. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3737-:d:387014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.