IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3059-d181110.html
   My bibliography  Save this article

Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing

Author

Listed:
  • Maria Isabel Vélez Márquez

    (Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, Canada)

  • Jasmin Raymond

    (Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, QC G1K 9A9, Canada)

  • Daniela Blessent

    (Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín 050026, Colombia)

  • Mikael Philippe

    (BRGM, Georesources Division, 45060 Orléans CEDEX 2, France)

  • Nataline Simon

    (Univ Rennes, CNRS, Géosciences Rennes—UMR 6118, F-35000 Rennes, France)

  • Olivier Bour

    (Univ Rennes, CNRS, Géosciences Rennes—UMR 6118, F-35000 Rennes, France)

  • Louis Lamarche

    (École de Technologie Supérieure, Département de génie mécanique, Montréal, QC H3C 1K3, Canada)

Abstract

Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability.

Suggested Citation

  • Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3059-:d:181110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    2. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    3. Gustafsson, A.-M. & Westerlund, L., 2011. "Heat extraction thermal response test in groundwater-filled borehole heat exchanger – Investigation of the borehole thermal resistance," Renewable Energy, Elsevier, vol. 36(9), pages 2388-2394.
    4. Gehlin, S.E.A. & Hellström, G., 2003. "Influence on thermal response test by groundwater flow in vertical fractures in hard rock," Renewable Energy, Elsevier, vol. 28(14), pages 2221-2238.
    5. Witte, Henk J.L., 2013. "Error analysis of thermal response tests," Applied Energy, Elsevier, vol. 109(C), pages 302-311.
    6. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    7. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    8. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    3. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    5. Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
    6. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    7. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    3. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    4. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    5. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    6. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).
    7. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    8. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
    10. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    11. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
    12. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    13. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    14. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    15. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
    17. Wu, Xuan & Wang, Zhengwen & Jin, Guang & Yang, Xue & Zhang, Zhiqiang & Bi, Wenming, 2016. "Development and experimental study on testing platform for rock-soil thermal response tester," Renewable Energy, Elsevier, vol. 87(P1), pages 765-771.
    18. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    19. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    20. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3059-:d:181110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.