IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3684-d385966.html
   My bibliography  Save this article

Production of Hydrogen-Rich Gas by Oxidative Steam Reforming of Dimethoxymethane over CuO-CeO 2 /γ-Al 2 O 3 Catalyst

Author

Listed:
  • Sukhe Badmaev

    (Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia
    Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia)

  • Vladimir Sobyanin

    (Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia)

Abstract

The catalytic properties of CuO-CeO 2 supported on alumina for the oxidative steam reforming (OSR) of dimethoxymethane (DMM) to hydrogen-rich gas in a tubular fixed bed reactor were studied. The CuO-CeO 2 /γ-Al 2 O 3 catalyst provided complete DMM conversion and hydrogen productivity > 10 L h −1 g cat −1 at 280 °C, GHSV (gas hourly space velocity) = 15,000 h −1 and DMM:O 2 :H 2 O:N 2 = 10:2.5:40:47.5 vol.%. Comparative studies showed that DMM OSR exceeded DMM steam reforming (SR) and DMM partial oxidation (PO) in terms of hydrogen productivity. Thus, the outcomes of lab-scale catalytic experiments show high promise of DMM oxidative steam reforming to produce hydrogen-rich gas for fuel cell feeding.

Suggested Citation

  • Sukhe Badmaev & Vladimir Sobyanin, 2020. "Production of Hydrogen-Rich Gas by Oxidative Steam Reforming of Dimethoxymethane over CuO-CeO 2 /γ-Al 2 O 3 Catalyst," Energies, MDPI, vol. 13(14), pages 1-10, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3684-:d:385966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexey Pechenkin & Sukhe Badmaev & Vladimir Belyaev & Vladimir Sobyanin, 2019. "Production of Hydrogen-Rich Gas by Formic Acid Decomposition over CuO-CeO 2 /γ-Al 2 O 3 Catalyst," Energies, MDPI, vol. 12(18), pages 1-10, September.
    2. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    3. Panagiota Garbis & Christoph Kern & Andreas Jess, 2019. "Kinetics and Reactor Design Aspects of Selective Methanation of CO over a Ru/γ-Al 2 O 3 Catalyst in CO 2 /H 2 Rich Gases," Energies, MDPI, vol. 12(3), pages 1-15, February.
    4. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Khomein, Piyachai & Ketelaars, Wesley & Lap, Tijs & Liu, Gao, 2021. "Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    5. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    6. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    7. Anders Christian Olesen & Søren Knudsen Kær & Torsten Berning, 2022. "A Multi-Fluid Model for Water and Methanol Transport in a Direct Methanol Fuel Cell," Energies, MDPI, vol. 15(19), pages 1-23, September.
    8. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    10. Norman Hendrik Riedel & Miroslav Špaček, 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    11. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    12. Nadaleti, Willian Cézar & Gomes, Jeferson Peres, 2023. "Green hydrogen production from urban waste biogas: An analysis of the Brazilian potential and the process’ economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    13. Dan-Adrian Mocanu & Viorel Bădescu & Ciprian Bucur & Iuliana Ștefan & Elena Carcadea & Maria Simona Răboacă & Ioana Manta, 2020. "PLC Automation and Control Strategy in a Stirling Solar Power System," Energies, MDPI, vol. 13(8), pages 1-19, April.
    14. Eun-Shin Bang & Myoung-Hwan Kim & Sang-Kyun Park, 2022. "Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications," Energies, MDPI, vol. 15(22), pages 1-16, November.
    15. Li, Jianwei & Yan, Chonghao & Yang, Qingqing & Hao, Dong & Zou, Weitao & Gao, Lei & Zhao, Xuan, 2023. "Quantitative diagnosis of PEMFC membrane humidity with a vector-distance based characteristic mapping approach," Applied Energy, Elsevier, vol. 335(C).
    16. Samuel Simon Araya & Sobi Thomas & Andrej Lotrič & Simon Lennart Sahlin & Vincenzo Liso & Søren Juhl Andreasen, 2021. "Effects of Impurities on Pre-Doped and Post-Doped Membranes for High Temperature PEM Fuel Cell Stacks," Energies, MDPI, vol. 14(11), pages 1-18, May.
    17. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    18. Istvan Vokony, 2021. "Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study," Clean Technol., MDPI, vol. 3(4), pages 1-15, September.
    19. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    20. Mengfan Zhou & Steffen Frensch & Vincenzo Liso & Na Li & Simon Lennart Sahlin & Giovanni Cinti & Samuel Simon Araya, 2022. "Modeling the Performance Degradation of a High-Temperature PEM Fuel Cell," Energies, MDPI, vol. 15(15), pages 1-21, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3684-:d:385966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.