IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3258-d375492.html
   My bibliography  Save this article

Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis

Author

Listed:
  • Dries. Frank Duvenhage

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa)

  • Alan C. Brent

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa
    Sustainable Energy Systems, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand)

  • William H.L. Stafford

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa
    Green Economy Solutions, Natural Resources and the Environment, Council for Scientific and Industrial Research, Stellenbosch 7600, South Africa)

  • Dean Van Den Heever

    (Legal Drone Solutions, Stellenbosch 7600, South Africa)

Abstract

Renewable Energy Technologies are rapidly gaining uptake in South Africa, already having more than 3900 MW operational wind, solar PV, Concentrating Solar Power (CSP) and biogas capacity. CSP has the potential to become a leading Renewable Energy Technology, as it is the only one inherently equipped with the facility for large-scale thermal energy storage for increased dispatchability. There are many studies that aim to determine the potential for CSP development in certain regions or countries. South Africa has a high solar irradiation resource by global standards, but few studies have been carried out to determine the potential for CSP. One such study was conducted in 2009, prior to any CSP plants having been built in South Africa. As part of a broader study to determine the impact of CSP on South Africa’s water resources, a geospatial approach was used to optimise this potential based on technological changes and improved spatial data. A tiered approach, using a comprehensive set of criteria to exclude unsuitable areas, was used to allow for the identification of suitable areas, as well as the modelling of electricity generation potential. It was found that there is more than 104 billion m 2 of suitable area, with a total theoretical potential of more than 11,000 TWh electricity generating capacity.

Suggested Citation

  • Dries. Frank Duvenhage & Alan C. Brent & William H.L. Stafford & Dean Van Den Heever, 2020. "Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis," Energies, MDPI, vol. 13(12), pages 1-10, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3258-:d:375492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Frank Duvenhage & Alan C. Brent & William H.L. Stafford & S. Grobbelaar, 2020. "Water and CSP—Linking CSP Water Demand Models and National Hydrology Data to Sustainably Manage CSP Development and Water Resources in Arid Regions," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    2. Duvenhage, D. Frank & Brent, Alan C. & Stafford, William H.L., 2019. "The need to strategically manage CSP fleet development and water resources: A structured review and way forward," Renewable Energy, Elsevier, vol. 132(C), pages 813-825.
    3. Fluri, Thomas P., 2009. "The potential of concentrating solar power in South Africa," Energy Policy, Elsevier, vol. 37(12), pages 5075-5080, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramgolam, Yatindra K. & Soyjaudah, K.M.S., 2015. "Unveiling the solar resource potential for photovoltaic applications in Mauritius," Renewable Energy, Elsevier, vol. 77(C), pages 94-100.
    2. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    3. Ndala Y. Mulongo & Pule A. Kholopane, 2018. "Cost Assessment: Electricity Generating Sources Against Energy Efficiency Measures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-28, March.
    4. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    5. Josephine K. Musango & Bamikole Amigun & Alan C. Brent, 2011. "Sustainable Electricity Generation Technologies in South Africa: Initiatives, Challenges and Policy Implications," Energy and Environment Research, Canadian Center of Science and Education, vol. 1(1), pages 124-124, December.
    6. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    7. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    8. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    9. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    10. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2019. "Solar thermal electricity in Nigeria: Prospects and challenges," Energy Policy, Elsevier, vol. 128(C), pages 440-448.
    13. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    14. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    15. Oliver O. Apeh & Ochuko K. Overen & Edson L. Meyer, 2021. "Monthly, Seasonal and Yearly Assessments of Global Solar Radiation, Clearness Index and Diffuse Fractions in Alice, South Africa," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    16. Ndiritu, S. Wagura & Engola, Monica Katungi, 2020. "The effectiveness of feed-in-tariff policy in promoting power generation from renewable energy in Kenya," Renewable Energy, Elsevier, vol. 161(C), pages 593-605.
    17. Tlhalerwa, Keabile & Mulalu, Mulalu, 2019. "Assessment of the concentrated solar power potential in Botswana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 294-306.
    18. Kadir, Mohd Zainal Abidin Ab & Rafeeu, Yaaseen, 2010. "A review on factors for maximizing solar fraction under wet climate environment in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2243-2248, October.
    19. Musango, Josephine K. & Brent, Alan C., 2011. "Assessing the sustainability of energy technological systems in Southern Africa: A review and way forward," Technology in Society, Elsevier, vol. 33(1), pages 145-155.
    20. Purohit, Ishan & Purohit, Pallav & Shekhar, Shashaank, 2013. "Evaluating the potential of concentrating solar power generation in Northwestern India," Energy Policy, Elsevier, vol. 62(C), pages 157-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3258-:d:375492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.