IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3120-d372345.html
   My bibliography  Save this article

Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method

Author

Listed:
  • Michał Piasecki

    (Thermal Physics, Acoustic and Environment Department, Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland)

  • Krystyna Kostyrko

    (Thermal Physics, Acoustic and Environment Department, Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland)

Abstract

When planning the energy demand of ventilation, proper consideration should be given to the possible scenarios of indoor air quality and pollutant concentrations. The purpose of the present research is to create a practical method of prioritising indoor air pollutants, considering technical, economical and health aspects, in the Indoor Air Quality model (IAQ). In order to find the global weights for the combined IAQ index model sub-elements (in practice, air pollutant concentrations), the Multi-Criteria Decision Making (MCDM) approach is used. The authors have approached the problem of a weighting scheme in a model such as the complex model of the IAQ related to making decisions with many criteria and with the Multi-Attribute Decision Making MADM approach (specifically MCDM). The basis of the MADM method is a decision matrix constructed rationally by the authors, which includes six attributes: actual indoor air carbon dioxide concentration, total volatile organic compounds (TVOCs) and formaldehyde HCHO concentration, and their anthropogenic and construction product emissions to the indoor environment. The decision model of IAQ index includes five alternatives (possible situations), and the combination of pollutant concentration attributes with additional emission attributes is related to the indoor environment under specific situation. For defining the weights of criteria, the authors provide objective approaches: (i) entropy-based approach considering measuring the amount of information, and (ii) CRITIC, a statistic-based approach. The value of the presented method, i.e., the determination of global weights for IAQ components, is shown as a practical application to determine IAQ and the Indoor Environmental Quality (IEQ) index for an office building used as a case study.

Suggested Citation

  • Michał Piasecki & Krystyna Kostyrko, 2020. "Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method," Energies, MDPI, vol. 13(12), pages 1-35, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3120-:d:372345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Piasecki & Krystyna Kostyrko & Małgorzata Fedorczak-Cisak & Katarzyna Nowak, 2020. "Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Zeshui Xu, 2015. "Uncertain Multi-Attribute Decision Making," Springer Books, Springer, edition 127, number 978-3-662-45640-8, September.
    3. Yanpeng Wu & Yuming Lu & Ding-Chin Chou, 2018. "Indoor air quality investigation of a university library based on field measurement and questionnaire survey," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 148-160.
    4. Diakoulaki, D & Mavrotas, G & Papayannakis, L, 1992. "A multicriteria approach for evaluating the performance of industrial firms," Omega, Elsevier, vol. 20(4), pages 467-474, July.
    5. N Deepa & K Ganesan & Kathiravan Srinivasan & Chuan-Yu Chang, 2019. "Realizing Sustainable Development via Modified Integrated Weighting MCDM Model for Ranking Agrarian Dataset," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    6. Małgorzata Fedorczak-Cisak & Anna Kotowicz & Elżbieta Radziszewska-Zielina & Bartłomiej Sroka & Tadeusz Tatara & Krzysztof Barnaś, 2020. "Multi-Criteria Optimisation of an Experimental Complex of Single-Family Nearly Zero-Energy Buildings," Energies, MDPI, vol. 13(7), pages 1-30, March.
    7. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    8. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    9. Michał Piasecki & Mateusz Kozicki & Szymon Firląg & Anna Goljan & Krystyna Kostyrko, 2018. "The Approach of Including TVOCs Concentration in the Indoor Environmental Quality Model (IEQ)—Case Studies of BREEAM Certified Office Buildings," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    10. Yanpeng Wu & Yuming Lu & Ding-Chin Chou, 2018. "Corrigendum: Indoor air quality investigation of a university library based on field measurement and questionnaire survey," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 192-192.
    11. Mehdi KESHAVARZ GHORABAEE & Edmundas Kazimieras ZAVADSKAS & Zenonas TURSKIS & Jurgita ANTUCHEVICIENE, 2016. "A New Combinative Distance-Based Assessment(Codas) Method For Multi-Criteria Decision-Making," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 25-44.
    12. Jeffrey C. Cegan & Ashley M. Filion & Jeffrey M. Keisler & Igor Linkov, 2017. "Trends and applications of multi-criteria decision analysis in environmental sciences: literature review," Environment Systems and Decisions, Springer, vol. 37(2), pages 123-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.
    2. Torkayesh, Ali Ebadi & Alizadeh, Reza & Soltanisehat, Leili & Torkayesh, Sajjad Ebadi & Lund, Peter D., 2022. "A comparative assessment of air quality across European countries using an integrated decision support model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Dominik Bekierski & Krystyna Barbara Kostyrko, 2021. "The Influence of Outdoor Particulate Matter PM 2.5 on Indoor Air Quality: The Implementation of a New Assessment Method," Energies, MDPI, vol. 14(19), pages 1-30, September.
    4. Michał Piasecki & Elżbieta Radziszewska-Zielina & Piotr Czerski & Małgorzata Fedorczak-Cisak & Michał Zielina & Paweł Krzyściak & Patrycja Kwaśniewska-Sip & Wojciech Grześkowiak, 2020. "Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building," Energies, MDPI, vol. 13(22), pages 1-27, November.
    5. Artur Miszczuk & Dariusz Heim, 2020. "Parametric Study of Air Infiltration in Residential Buildings—The Effect of Local Conditions on Energy Demand," Energies, MDPI, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarfaraz Hashemkhani Zolfani & Edmundas Kazimieras Zavadskas & Payam Khazaelpour & Fausto Cavallaro, 2018. "The Multi-Aspect Criterion in the PMADM Outline and Its Possible Application to Sustainability Assessment," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    2. Laura Tupenaite & Arturas Kaklauskas & Irene Lill & Ineta Geipele & Jurga Naimaviciene & Loreta Kanapeckiene & Linda Kauskale, 2018. "Sustainability Assessment of the New Residential Projects in the Baltic States: A Multiple Criteria Approach," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    3. Laura Tupenaite & Irene Lill & Ineta Geipele & Jurga Naimaviciene, 2017. "Ranking of Sustainability Indicators for Assessment of the New Housing Development Projects: Case of the Baltic States," Resources, MDPI, vol. 6(4), pages 1-21, October.
    4. Peipei You & Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    5. Michał Piasecki & Mateusz Kozicki & Szymon Firląg & Anna Goljan & Krystyna Kostyrko, 2018. "The Approach of Including TVOCs Concentration in the Indoor Environmental Quality Model (IEQ)—Case Studies of BREEAM Certified Office Buildings," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    6. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    7. Davis-Sramek, Beth & Robinson, Jessica L. & Darby, Jessica L. & Thomas, Rodney W., 2020. "Exploring the differential roles of environmental and social sustainability in carrier selection decisions," International Journal of Production Economics, Elsevier, vol. 227(C).
    8. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    9. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    10. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    11. Amir Noori & Hossein Bonakdari & Khosro Morovati & Bahram Gharabaghi, 2018. "The optimal dam site selection using a group decision-making method through fuzzy TOPSIS model," Environment Systems and Decisions, Springer, vol. 38(4), pages 471-488, December.
    12. Fabio Blanco-Mesa & Anna M. Gil-Lafuente & José M. Merigó, 2018. "Subjective stakeholder dynamics relationships treatment: a methodological approach using fuzzy decision-making," Computational and Mathematical Organization Theory, Springer, vol. 24(4), pages 441-472, December.
    13. Chiara Richiardi & Maria Rita Minciardi & Consolata Siniscalco & Maria Adamo, 2023. "Cumulative Spatial and Temporal Analysis of Anthropogenic Impacts in the Protected Area of the Gran Paradiso National Park in the NW Alps, Italy," Land, MDPI, vol. 12(6), pages 1-21, May.
    14. Palola, Pirta & Bailey, Richard & Wedding, Lisa, 2022. "A novel framework to operationalise value-pluralism in environmental valuation: Environmental value functions," Ecological Economics, Elsevier, vol. 193(C).
    15. Yayi Yuan & Zeshui Xu & Yixin Zhang, 2022. "The DEMATEL–COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 137-156, March.
    16. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    17. Zachary A. Collier & James H. Lambert & Igor Linkov, 2017. "Preview of the June issue featuring literature reviews of MCDA and articles authored by students," Environment Systems and Decisions, Springer, vol. 37(2), pages 121-122, June.
    18. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    19. Souad Ahmed Benromdhane, 2021. "A multi-attribute utility model for environmental decision-making: an application to casting," Environment Systems and Decisions, Springer, vol. 41(1), pages 21-32, March.
    20. Meral Özomay, 2023. "Sustainable and Environmental Dyeing with MAUT Method Comparative Selection of the Dyeing Recipe," Sustainability, MDPI, vol. 15(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3120-:d:372345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.