IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1676-d227895.html
   My bibliography  Save this article

Experimental Study of the Effect of Splitter Blades on the Performance Characteristics of Francis Turbines

Author

Listed:
  • Yun Jia

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Xianzhu Wei

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Qianyun Wang

    (State Key Laboratory of Hydro-Power Equipment, Harbin Institute of Large Electrical Machinery, Harbin 150040, China)

  • Jinsheng Cui

    (State Key Laboratory of Hydro-Power Equipment, Harbin Institute of Large Electrical Machinery, Harbin 150040, China)

  • Fengchen Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

With the improvement in energy structures, the safe and stable operation of hydropower units is becoming the most important issue for electric grids. To expand the stable operating range of a 200 m head Francis turbine, splitter blades were designed to increase the cavitation ability and lower the high-amplitude pressure fluctuations. Experimental studies were carried out to analyze the effect of the splitter blades on the turbine performance characteristics (efficiency, cavitation, and pressure fluctuation), and the results obtained were compared with those for normal blades. The results reveal that the splitter blades can increase the efficiency by approximately 2%, and they can reduce the pressure fluctuation in the vaneless space, under high-head operating conditions. The flow observation results reveal that the splitter blades can restrain the cavitation at the suction side of the blades, and thereby expand the stable operating range. Analyses of the pressure fluctuation show that the splitter blades can change the blade passing frequency and sharply lower its amplitude. This study may provide a reference for all Francis turbine designs, which makes it significant for the stable and effective operation of hydropower units.

Suggested Citation

  • Yun Jia & Xianzhu Wei & Qianyun Wang & Jinsheng Cui & Fengchen Li, 2019. "Experimental Study of the Effect of Splitter Blades on the Performance Characteristics of Francis Turbines," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1676-:d:227895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    2. Deyou Li & Yuekun Sun & Zhigang Zuo & Shuhong Liu & Hongjie Wang & Zhenggui Li, 2018. "Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. David Valentín & Alexandre Presas & Eduard Egusquiza & Carme Valero & Mònica Egusquiza & Matias Bossio, 2017. "Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities," Energies, MDPI, vol. 10(12), pages 1-17, December.
    4. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Zhao & Fanyu Kong & Yisong Zhou & Bin Xia & Yuxing Bai, 2019. "Optimization Design of the Impeller Based on Orthogonal Test in an Ultra-Low Specific Speed Magnetic Drive Pump," Energies, MDPI, vol. 12(24), pages 1-21, December.
    2. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    3. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
    2. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    3. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    4. Zhou, Xing & Shi, Changzheng & Miyagawa, Kazuyoshi & Wu, Hegao, 2021. "Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 606-617.
    5. Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
    6. Abdulbasit Nasir & Edessa Dribssa & Misrak Girma & Habtamu Bayera Madessa, 2023. "Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications," Energies, MDPI, vol. 16(13), pages 1-16, June.
    7. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    8. Valentín, David & Presas, Alexandre & Valero, Carme & Egusquiza, Mònica & Egusquiza, Eduard & Gomes, Joao & Avellan, François, 2020. "Transposition of the mechanical behavior from model to prototype of Francis turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1011-1023.
    9. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    10. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    11. Zhang, Fangfang & Fang, Mingkun & Pan, Jiale & Tao, Ran & Zhu, Di & Liu, Weichao & Xiao, Ruofu, 2023. "Guide vane profile optimization of pump-turbine for grid connection performance improvement," Energy, Elsevier, vol. 274(C).
    12. Ran, Hongjuan & Liu, Yong & Luo, Xianwu & Shi, Tianjiao & Xu, Yongliang & Chen, Yuanlin & Wang, Dezhong, 2020. "Experimental comparison of two different positive slopes in one single pump turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1218-1228.
    13. Sun, Longgang & Guo, Pengcheng & Luo, Xingqi, 2020. "Numerical investigation on inter-blade cavitation vortex in a Franics turbine," Renewable Energy, Elsevier, vol. 158(C), pages 64-74.
    14. Liu, Quan-Zhong & Su, Wen-Tao & Li, Xiao-Bin & Zhang, Ya-Ning, 2020. "Dynamic characteristics of load rejection process in a reversible pump-turbine," Renewable Energy, Elsevier, vol. 146(C), pages 1922-1931.
    15. Wang, Xiu & Yang, Jia-Fu & Huang, Xiao-Wen & Wang, Wen-Quan, 2024. "Using bionic tubercles to control swirling flow instabilities of a hydraulic turbine during the load rejection process," Energy, Elsevier, vol. 311(C).
    16. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    17. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    18. Sergey Skripkin & Zhigang Zuo & Mikhail Tsoy & Pavel Kuibin & Shuhong Liu, 2022. "Oscillation of Cavitating Vortices in Draft Tubes of a Simplified Model Turbine and a Model Pump–Turbine," Energies, MDPI, vol. 15(8), pages 1-18, April.
    19. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    20. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1676-:d:227895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.