IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1446-d223074.html
   My bibliography  Save this article

A Dynamic Rotor Vertical-Axis Wind Turbine with a Blade Transitioning Capability

Author

Listed:
  • Elie Antar

    (School of Engineering, Lebanese American University, P.O. Box 36, Byblos 1102, Lebanon)

  • Amne El Cheikh

    (School of Engineering, Lebanese American University, P.O. Box 36, Byblos 1102, Lebanon)

  • Michel Elkhoury

    (School of Engineering, Lebanese American University, P.O. Box 36, Byblos 1102, Lebanon)

Abstract

This work presents an optimized design of a dynamic rotor vertical-axis wind turbine (DR VAWT) which maximizes the operational tip-speed ratio (TSR) range and the average power coefficient (C p ) value while maintaining a low cut-in wind velocity. The DR VAWT is capable of mimicking a Savonius rotor during the start-up phase and transitioning into a Darrieus one with increasing rotor radius at higher TSRs. The design exploits the fact that with increasing rotor radius, the TSR value increases, where the peak power coefficient is attained. A 2.5D improved delayed detached eddy simulation (IDDES) approach was adopted in order to optimize the dynamic rotor design, where results showed that the generated blades’ trajectories can be readily replicated by simple mechanisms in reality. A thorough sensitivity analysis was conducted on the generated optimized blades’ trajectories, where results showed that they were insensitive to values of the Reynolds number. The performance of the DR VAWT turbine with its blades following different trajectories was contrasted with the optimized turbine, where the influence of the blade pitch angle was highlighted. Moreover, a cross comparison between the performance of the proposed design and that of the hybrid Savonius–Darrieus one found in the literature was carefully made. Finally, the effect of airfoil thickness on the performance of the optimized DR VAWT was thoroughly analyzed.

Suggested Citation

  • Elie Antar & Amne El Cheikh & Michel Elkhoury, 2019. "A Dynamic Rotor Vertical-Axis Wind Turbine with a Blade Transitioning Capability," Energies, MDPI, vol. 12(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1446-:d:223074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    3. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    4. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Performance tests on helical Savonius rotors," Renewable Energy, Elsevier, vol. 34(3), pages 521-529.
    5. Goh, Seach Chyr & Boopathy, Sethu Raman & Krishnaswami, Chidambaresan & Schlüter, Jörg Uwe, 2016. "Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation," Renewable Energy, Elsevier, vol. 87(P1), pages 332-345.
    6. Subramanian, Abhishek & Yogesh, S. Arun & Sivanandan, Hrishikesh & Giri, Abhijit & Vasudevan, Madhavan & Mugundhan, Vivek & Velamati, Ratna Kishore, 2017. "Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model," Energy, Elsevier, vol. 133(C), pages 179-190.
    7. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    8. Jafari, Mohammad & Razavi, Alireza & Mirhosseini, Mojtaba, 2018. "Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 165(PA), pages 792-810.
    9. Asr, Mahdi Torabi & Nezhad, Erfan Zal & Mustapha, Faizal & Wiriadidjaja, Surjatin, 2016. "Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils," Energy, Elsevier, vol. 112(C), pages 528-537.
    10. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    11. Chen, Jian & Chen, Liu & Xu, Hongtao & Yang, Hongxing & Ye, Changwen & Liu, Di, 2016. "Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family," Energy, Elsevier, vol. 114(C), pages 318-331.
    12. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    13. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    14. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    15. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    16. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    17. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Boutros & Ali Fakih & Sara Kassab & Zeina Lizzaik, 2022. "Does the Number of Publications Matter for Academic Promotion in Higher Education? Evidence from Lebanon," Social Sciences, MDPI, vol. 11(10), pages 1-23, October.
    2. Pierre Boutros & Ali Fakih, 2022. "Drivers of Research Outcomes in Developing Countries: The Case of Lebanon," Economies, MDPI, vol. 10(3), pages 1-21, March.
    3. Cameron Gerrie & Sheikh Zahidul Islam & Sean Gerrie & Naomi Turner & Taimoor Asim, 2023. "3D CFD Modelling of Performance of a Vertical Axis Turbine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Piotr Doerffer & Krzysztof Doerffer & Tomasz Ochrymiuk & Janusz Telega, 2019. "Variable Size Twin-Rotor Wind Turbine," Energies, MDPI, vol. 12(13), pages 1-17, July.
    5. Liang Li & Inderjit Chopra & Weidong Zhu & Meilin Yu, 2021. "Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed Ratio," Energies, MDPI, vol. 14(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    2. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    3. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Tirandaz, M. Rasoul & Rezaeiha, Abdolrahim, 2021. "Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils," Renewable Energy, Elsevier, vol. 173(C), pages 422-441.
    5. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    6. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    7. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    8. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    10. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    12. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    13. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    14. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    15. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    16. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    17. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    18. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    19. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    20. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1446-:d:223074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.