IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1042-d214911.html
   My bibliography  Save this article

The Effects of Courtyards on the Thermal Performance of a Vernacular House in a Hot-Summer and Cold-Winter Climate

Author

Listed:
  • Shimeng Hao

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China)

  • Changming Yu

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Yuejia Xu

    (School of Architecture, Tsinghua University, Beijing 100084, China)

  • Yehao Song

    (School of Architecture, Tsinghua University, Beijing 100084, China)

Abstract

Achieving comfort in hot summer and cold winter (HSCW) climate zones can be challenging, since the climate is characterized by high temperatures in the summer and relatively colder temperatures in the winter. Courtyards, along with other semi-open spaces such as verandas and overhangs, play an important role in mitigating outdoor climate fluctuations. In this research, the effects of courtyards on the thermal performance of vernacular houses in HSCW climate zones were studied via field measurements and computational fluid dynamics (CFD) models. The selected courtyard house was a representative vernacular timber dwelling situated in the southeast of Chongqing, China. The indoor and outdoor air temperature measurements revealed that the courtyard did play an active role as a climatic buffer and significantly reduced the temperature’s peak value in the summer, while during the winter, the courtyard prevented the surrounding rooms from receiving direct solar radiation, and thus to some extent acted as a heat barrier. The contributions of thermal mass are quite limited in this area, due to insufficient solar radiation in winter and general building operations. The natural ventilation mechanism of courtyard houses in HSCW zones was further studied through CFD simulations. The selected opened courtyard was compared to an enclosed structure with similar building configurations. The airflow patterns driven by wind and buoyancy effects were first simulated separately, and then together, to illustrate the ventilation mechanisms. The simulation results show that the courtyard’s natural ventilation behavior benefited from the proper openings on ground level.

Suggested Citation

  • Shimeng Hao & Changming Yu & Yuejia Xu & Yehao Song, 2019. "The Effects of Courtyards on the Thermal Performance of a Vernacular House in a Hot-Summer and Cold-Winter Climate," Energies, MDPI, vol. 12(6), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1042-:d:214911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    2. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    3. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    4. Zamani, Zahra & Heidari, Shahin & Hanachi, Pirouz, 2018. "Reviewing the thermal and microclimatic function of courtyards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 580-595.
    5. Juan M. Rojas & Carmen Galán-Marín & Enrique D. Fernández-Nieto, 2012. "Parametric Study of Thermodynamics in the Mediterranean Courtyard as a Tool for the Design of Eco-Efficient Buildings," Energies, MDPI, vol. 5(7), pages 1-23, July.
    6. Coch, Helena, 1998. "Chapter 4--Bioclimatism in vernacular architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 67-87, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zhang & Qinian Hu & Qi Ding & Dian Zhou & Weijun Gao & Hiroatsu Fukuda, 2021. "Towards a Rural Revitalization Strategy for the Courtyard Layout of Vernacular Dwellings Based on Regional Adaptability and Outdoor Thermal Performance in the Gully Regions of the Loess Plateau, China," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    2. Ma Katrina Rañeses & Alice Chang-Richards & Kevin I-Kai Wang & Kim Natasha Dirks, 2021. "Housing for Now and the Future: A Systematic Review of Climate-Adaptive Measures," Sustainability, MDPI, vol. 13(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    2. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    3. M'Saouri El Bat, Adnane & Romani, Zaid & Bozonnet, Emmanuel & Draoui, Abdeslam & Allard, Francis, 2023. "Optimizing urban courtyard form through the coupling of outdoor zonal approach and building energy modeling," Energy, Elsevier, vol. 264(C).
    4. Hao Sun & Carlos Jimenez-Bescos & Murtaza Mohammadi & Fangliang Zhong & John Kaiser Calautit, 2021. "Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates," Energies, MDPI, vol. 14(17), pages 1-25, August.
    5. Tao Zhang & Qinian Hu & Qi Ding & Dian Zhou & Weijun Gao & Hiroatsu Fukuda, 2021. "Towards a Rural Revitalization Strategy for the Courtyard Layout of Vernacular Dwellings Based on Regional Adaptability and Outdoor Thermal Performance in the Gully Regions of the Loess Plateau, China," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    6. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    7. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    8. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    10. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    11. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Xiaodong Xu & Chenhuan Yin & Wei Wang & Ning Xu & Tianzhen Hong & Qi Li, 2019. "Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    13. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    14. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    15. Mohammed Awad Abuhussain & Nedhal Al-Tamimi & Badr S. Alotaibi & Manoj Kumar Singh & Sanjay Kumar & Rana Elnaklah, 2022. "Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia," Energies, MDPI, vol. 15(15), pages 1-18, August.
    16. Yoshihide Tominaga, 2023. "CFD Prediction for Wind Power Generation by a Small Vertical Axis Wind Turbine: A Case Study for a University Campus," Energies, MDPI, vol. 16(13), pages 1-19, June.
    17. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    18. Wei Feng & Wei Ding & Yingdi Yin & Qixian Lin & Meng Zheng & Miaomiao Fei, 2021. "Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi’an Baxian’an, China," IJERPH, MDPI, vol. 18(20), pages 1-25, October.
    19. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    20. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1042-:d:214911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.