IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p400-d201174.html
   My bibliography  Save this article

Thermal and Energy Evaluation of a Domestic Refrigerator under the Influence of the Thermal Load

Author

Listed:
  • Juan M. Belman-Flores

    (Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, C.P. 36885 Salamanca, Mexico)

  • Diana Pardo-Cely

    (Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, C.P. 36885 Salamanca, Mexico)

  • Miguel A. Gómez-Martínez

    (Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, C.P. 36885 Salamanca, Mexico)

  • Iván Hernández-Pérez

    (División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86690 Cunduacán, Mexico)

  • David A. Rodríguez-Valderrama

    (Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, C.P. 36885 Salamanca, Mexico)

  • Yonathan Heredia-Aricapa

    (Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, C.P. 36885 Salamanca, Mexico)

Abstract

This study seeks to understand the thermal and energetic behavior of a domestic refrigerator more widely by experimentally evaluating the main effects of the thermal load (food) and the variation of the ambient temperature. To carry out the experiments, the thermal load was classified based on the results of a survey conducted on different consumers in the state of Guanajuato, Mexico. The thermal behavior of both compartments of the refrigerator, the total energy consumption, the power of the compressor in its first on-state, and the coefficient of performance, according to the classification of the thermal loads and the room temperature, were evaluated. Finally, it is verified that the thermal load and the room temperature have a significant influence on the energy performance of the refrigerator.

Suggested Citation

  • Juan M. Belman-Flores & Diana Pardo-Cely & Miguel A. Gómez-Martínez & Iván Hernández-Pérez & David A. Rodríguez-Valderrama & Yonathan Heredia-Aricapa, 2019. "Thermal and Energy Evaluation of a Domestic Refrigerator under the Influence of the Thermal Load," Energies, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:400-:d:201174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belman-Flores, J.M. & Barroso-Maldonado, J.M. & Rodríguez-Muñoz, A.P. & Camacho-Vázquez, G., 2015. "Enhancements in domestic refrigeration, approaching a sustainable refrigerator – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 955-968.
    2. Harrington, Lloyd & Aye, Lu & Fuller, Bob, 2018. "Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data," Applied Energy, Elsevier, vol. 211(C), pages 346-357.
    3. Masjuki, H.H & Saidur, R & Choudhury, I.A & Mahlia, T.M.I & Ghani, A.K & Maleque, M.A, 2001. "The applicability of ISO household refrigerator–freezer energy test specifications in Malaysia," Energy, Elsevier, vol. 26(7), pages 723-737.
    4. Hasanuzzaman, M. & Saidur, R. & Masjuki, H.H., 2009. "Effects of operating variables on heat transfer and energy consumption of a household refrigerator-freezer during closed door operation," Energy, Elsevier, vol. 34(2), pages 196-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biglia, Alessandro & Gemmell, Andrew J. & Foster, Helen J. & Evans, Judith A., 2020. "Energy performance of domestic cold appliances in laboratory and home environments," Energy, Elsevier, vol. 204(C).
    2. Kleidaras, Alexandros & Kiprakis, Aristides E. & Thompson, John S., 2018. "Human in the loop heterogeneous modelling of thermostatically controlled loads for demand side management studies," Energy, Elsevier, vol. 145(C), pages 754-769.
    3. Hueppe, Christian & Geppert, Jasmin & Moenninghoff-Juessen, Julia & Wolff, Lena & Stamminger, Rainer & Paul, Andreas & Elsner, Andreas & Vrabec, Jadran & Wagner, Hendrik & Hoelscher, Heike & Becker, W, 2021. "Investigating the real life energy consumption of refrigeration appliances in Germany: Are present policies sufficient?," Energy Policy, Elsevier, vol. 155(C).
    4. Liu, Guoqiang & Yan, Gang & Yu, Jianlin, 2021. "A review of refrigerator gasket: Development trend, heat and mass transfer characteristics, structure and material optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    6. Daria Krasota & Przemysław Błasiak & Piotr Kolasiński, 2023. "Literature Review of Frost Formation Phenomena on Domestic Refrigerators Evaporators," Energies, MDPI, vol. 16(7), pages 1-30, March.
    7. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Makhnatch, Pavel & Molés, Francisco, 2017. "Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1031-1042.
    8. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    9. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    10. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    11. Mohammad Reza Zavvar Sabegh & Chris Bingham, 2019. "Model Predictive Control with Binary Quadratic Programming for the Scheduled Operation of Domestic Refrigerators," Energies, MDPI, vol. 12(24), pages 1-20, December.
    12. Ahamed, J.U. & Saidur, R. & Masjuki, H.H. & Mekhilef, S. & Ali, M.B. & Furqon, M.H., 2011. "An application of energy and exergy analysis in agricultural sector of Malaysia," Energy Policy, Elsevier, vol. 39(12), pages 7922-7929.
    13. Chen, Qun & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2009. "Optimization principles for convective heat transfer," Energy, Elsevier, vol. 34(9), pages 1199-1206.
    14. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    15. Juan M. Belman-Flores & Diana Pardo-Cely & Francisco Elizalde-Blancas & Armando Gallegos-Muñoz & Vicente Pérez-García & Miguel A. Gómez-Martínez, 2019. "Perspectives on Consumer Habits with Domestic Refrigerators and Its Consequences for Energy Consumption: Case of Study in Guanajuato, Mexico," Energies, MDPI, vol. 12(5), pages 1-20, March.
    16. Chen, Qi & Yu, Mengqi & Yan, Gang & Yu, Jianlin, 2022. "Thermodynamic analyses of a modified ejector enhanced dual temperature refrigeration cycle for domestic refrigerator/freezer application," Energy, Elsevier, vol. 244(PA).
    17. Cabeza, Luisa F. & Ürge-Vorsatz, Diana & Ürge, Daniel & Palacios, Anabel & Barreneche, Camila, 2018. "Household appliances penetration and ownership trends in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 1-8.
    18. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Mahlia, T.M.I., 2011. "Energy savings and cost-benefit analysis of using compression and absorption chillers for air conditioners in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1950-1960, May.
    19. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    20. Tao, Jing & Yu, Suiran, 2011. "Implementation of energy efficiency standards of household refrigerator/freezer in China: Potential environmental and economic impacts," Applied Energy, Elsevier, vol. 88(5), pages 1890-1905, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:400-:d:201174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.