IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4249-d284665.html
   My bibliography  Save this article

Nonlinear Analysis and Performance of Electret-Based Microcantilever Energy Harvesters

Author

Listed:
  • Bashar Hammad

    (Department of Mechanical and Maintenance Engineering, German Jordanian University, Amman 11180, Jordan)

  • Hichem Abdelmoula

    (Gowell International, Houston, TX 77041, USA)

  • Eihab Abdel-Rahman

    (Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Abdessattar Abdelkefi

    (Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88001, USA)

Abstract

An energy harvester composed of a microcantilever beam with a tip mass and a fixed electrode covered with an electret layer is investigated when subject to an external harmonic base excitation. The tip mass and fixed electrode form a variable capacitor connected to a load resistance. A single-degree-of-freedom model, derived based on Newton’s and Kirshoff’s laws, shows that the tip mass displacement and charge in the variable capacitor are nonlinearly coupled. Analysis of the eigenvalue problem indicates the influence of the electret surface voltage and electrical load resistance on the harvester linear characteristics, namely the harvester coupled frequency and electromechanical damping. Then, the frequency–response curves are obtained numerically for a range of load resistance, electret voltage and base excitation amplitudes. A softening nonlinear effect is observed as a result of decreasing the load resistance and increasing the electret voltage. It is found that there is an optimal electret voltage with the highest harvested electrical power. Below this optimal value, the bandwidth is very small, whereas the bandwidth is large when the electret voltage is above this optimal value. In addition, it is noted that for a certain excitation frequency, the harvested power decreases or increases as a function of electrical load resistance when the coupled frequency is closer to short- or open-circuit frequency, respectively. However, when the coupled frequency is between the short-circuit and open-circuit frequencies, the harvested power has an optimal resistance with the highest power. Increasing the excitation amplitude to raise the harvested power could be accompanied with dynamic pull-in instability and/or softening behavior depending on the electrical load resistance and electret voltage. However, large softening behavior would prevent the pull-in instability, increase the level of the harvested power, and broaden the bandwidth. These observations give a deeper insight into the behavior of such energy harvesters and are of great importance to the designers of electrostatic energy harvesters.

Suggested Citation

  • Bashar Hammad & Hichem Abdelmoula & Eihab Abdel-Rahman & Abdessattar Abdelkefi, 2019. "Nonlinear Analysis and Performance of Electret-Based Microcantilever Energy Harvesters," Energies, MDPI, vol. 12(22), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4249-:d:284665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghavami, Mahyar & Azizi, Saber & Ghazavi, Mohammad Reza, 2018. "On the dynamics of a capacitive electret-based micro-cantilever for energy harvesting," Energy, Elsevier, vol. 153(C), pages 967-976.
    2. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    3. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    2. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    3. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    4. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    5. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    6. Nik Fakhri Nek Daud & Ruzlaini Ghoni, 2020. "Vibration Energy Harvesting Technique: A Comprehensive Review," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 4(2), pages 46-48:4, October.
    7. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    8. Jaeyoo Choi & Edmond W Zaia & Madeleine Gordon & Jeffrey J Urban, 2018. "Weaving a New World: Wearable Thermoelectric Textiles," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 2(2), pages 23-25, January.
    9. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    10. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    11. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    12. Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
    13. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    14. Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).
    15. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    16. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    17. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    18. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    19. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    20. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4249-:d:284665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.