IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp967-976.html
   My bibliography  Save this article

On the dynamics of a capacitive electret-based micro-cantilever for energy harvesting

Author

Listed:
  • Ghavami, Mahyar
  • Azizi, Saber
  • Ghazavi, Mohammad Reza

Abstract

In this paper, an electret-based capacitive energy harvesting device with out-of-plane gap closing scheme has been modeled and analyzed. The device is composed of a micro cantilever and a substrate which form a variable capacitor that is in series with a resistance. An electret material is used to provide the bias voltage which is needed in capacitive energy harvesters in order to scavenge energy from ambient vibration. The ambient vibration is applied to the system as a harmonic base excitation. The motion equations and the corresponding boundary conditions are derived using Hamilton's principle based on Euler-Bernoulli beam theory, and the Kirchhoff's voltage law is employed to couple the mechanical and electrical domains. The electro-mechanical governing equations are discretized using Galerkin procedure and integrated numerically over time. In order to verify the derived formulation, an energy conservation approach is employed in the free oscillation of the device. The stability of the system in the electrostatic field is examined in both static and dynamic cases. By investigating the behavior of the system in free oscillations, the resistance is found to affect the behavior of the micro-cantilever as a damper with a Lorentzian variation, with the maximum equivalent damping coefficient corresponding to the resistance of 100 MΩ. The performance of the energy harvester in the presence of ambient vibrations is evaluated based on the frequency response of the device, and the effect of various parameter as investigated on the device performance, among which the resistance appears to have the most dominant effect on the system. It is found that in low resistances, the micro-cantilever exhibit a softening behavior due to the large electrostatic pressure acting on it, however, by increasing the resistance, the frequency response of the system becomes linear. Besides, the resistance affects the amplitude of the micro-cantilever due to its damping effect. For the case studied here, a theoretical harvested power in the order of 1 μW is harvested by the device for a frequency of 2.5 MHz and the electret surface voltage of 180 V. Of course, by adjusting the physical properties, the device can be fitted for the needs of the target application.

Suggested Citation

  • Ghavami, Mahyar & Azizi, Saber & Ghazavi, Mohammad Reza, 2018. "On the dynamics of a capacitive electret-based micro-cantilever for energy harvesting," Energy, Elsevier, vol. 153(C), pages 967-976.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:967-976
    DOI: 10.1016/j.energy.2018.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azizi, Saber & Ghodsi, Ali & Jafari, Hamid & Ghazavi, Mohammad Reza, 2016. "A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester," Energy, Elsevier, vol. 96(C), pages 495-506.
    2. Chunhui Gao & Shiqiao Gao & Haipeng Liu & Lei Jin & Junhu Lu, 2017. "Electret Length Optimization of Output Power for Double-End Fixed Beam Out-of-Plane Electret-Based Vibration Energy Harvesters," Energies, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Jianan & Qin, Weiyang & Deng, Wangzheng & Zhang, Pengtian & Zhou, Zhiyong, 2021. "Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum," Energy, Elsevier, vol. 227(C).
    2. Arias, Francisco J. & De Las Heras, Salvador, 2019. "The use of compliant surfaces for harvesting energy from water streams," Energy, Elsevier, vol. 189(C).
    3. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
    4. Bashar Hammad & Hichem Abdelmoula & Eihab Abdel-Rahman & Abdessattar Abdelkefi, 2019. "Nonlinear Analysis and Performance of Electret-Based Microcantilever Energy Harvesters," Energies, MDPI, vol. 12(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
    2. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    3. Banerjee, Shreya & Roy, Sitikantha, 2018. "A dimensionally reduced order piezoelectric energy harvester model," Energy, Elsevier, vol. 148(C), pages 112-122.
    4. Jafari, Hamid & Ghodsi, Ali & Azizi, Saber & Ghazavi, Mohammad Reza, 2017. "Energy harvesting based on magnetostriction, for low frequency excitations," Energy, Elsevier, vol. 124(C), pages 1-8.
    5. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    6. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    7. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    8. Yu, Han & Hou, Chengwei & Shan, Xiaobiao & Zhang, Xingxu & Song, Henan & Zhang, Xiaofan & Xie, Tao, 2022. "A novel seesaw-like piezoelectric energy harvester for low frequency vibration," Energy, Elsevier, vol. 261(PB).
    9. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    10. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    11. Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
    12. Hassen M. Ouakad, 2023. "Vibration-Based Energy Harvesters: New Ways to Scavenge Energy," Energies, MDPI, vol. 16(13), pages 1-3, June.
    13. Yang, Feng & Du, Lin & Chen, Weigen & Li, Jian & Wang, Youyuan & Wang, Disheng, 2017. "Hybrid energy harvesting for condition monitoring sensors in power grids," Energy, Elsevier, vol. 118(C), pages 435-445.
    14. Rojas, E.F. & Faroughi, S. & Abdelkefi, A. & Park, Y.H., 2021. "Investigations on the performance of piezoelectric-flexoelectric energy harvesters," Applied Energy, Elsevier, vol. 288(C).
    15. Emmanuel Mbondo Binyet & Jen-Yuan Chang & Chih-Yung Huang, 2020. "Flexible Plate in the Wake of a Square Cylinder for Piezoelectric Energy Harvesting—Parametric Study Using Fluid–Structure Interaction Modeling," Energies, MDPI, vol. 13(10), pages 1-29, May.
    16. Wang, K.F. & Wang, B.L., 2018. "Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect," Energy, Elsevier, vol. 149(C), pages 597-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:967-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.