IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12521-d930868.html
   My bibliography  Save this article

Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia

Author

Listed:
  • Muhammad Nazri Rejab

    (Faculty of Mechanical and Manufacturing Engineering, Tun Hussein Onn University, Parit Raja 86400, Malaysia)

  • Omar Mohd Faizan Marwah

    (Faculty of Mechanical and Manufacturing Engineering, Tun Hussein Onn University, Parit Raja 86400, Malaysia)

  • Muhammad Akmal Johar

    (Technical Delivery Excellence, Level 21, PETRONAS Tower 3, Persiaran KLCC, Kuala Lumpur City Centre, Kuala Lumpur 50088, Malaysia)

  • Mohamed Najib Ribuan

    (Faculty of Electric and Electronic Engineering, Tun Hussein Onn University, Parit Raja 86400, Malaysia)

Abstract

Harvesting energy from solar radiation in Malaysia attracts the attention of researchers to utilize the potential by ongoing improvement. Roofing material with low albedo absorbs the heat, that can then be harvested using a thermoelectric generator. Previous research only measured the open-circuit voltage with different thermoelectric generator configurations. Low power output limits the potential to be utilized. The low output power can be increased using a DC converter. However, the converter must be tuned concerning low- and high-voltage levels, bipolar, and the maximum power point tracking. Therefore, this paper presents a dual-level voltage bipolar (DLVB) thermal energy harvesting system. The circuit is tested at constant and various time intervals to evaluate the system’s functionality and performance. Experiment results show that the proposed harvesting system can boost from 0.6 and 1.6 V to achieve the optimum level. The mean efficiency of the harvesting circuit obtains 91.92% at various time intervals. Further, the field test result obtains output power from 1.45 to 66.1 mW, with the mean efficiency range of 89.62% to 92.98%. Furthermore, recommendations are listed for future research.

Suggested Citation

  • Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12521-:d:930868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nursyahirah Mohd Shatar & Mohd Azizi Abdul Rahman & Mohd Nabil Muhtazaruddin & Sheikh Ahmad Zaki Shaikh Salim & Baljit Singh & Firdaus Muhammad-Sukki & Nurul Aini Bani & Ahmad Shakir Mohd Saudi & Jorg, 2019. "Performance Evaluation of Unconcentrated Photovoltaic-Thermoelectric Generator Hybrid System under Tropical Climate," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    2. Sun, Zeyu & Luo, Ding & Wang, Ruochen & Li, Ying & Yan, Yuying & Cheng, Ziming & Chen, Jie, 2022. "Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model," Energy, Elsevier, vol. 256(C).
    3. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    4. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    5. Zakariya M. Dalala & Osama Saadeh & Mathhar Bdour & Zaka Ullah Zahid, 2018. "A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control †," Energies, MDPI, vol. 11(7), pages 1-16, July.
    6. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    7. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    8. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    9. Mohsenzadeh, Milad & Shafii, M.B. & Jafari mosleh, H., 2017. "A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design," Renewable Energy, Elsevier, vol. 113(C), pages 822-834.
    10. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    11. Lineykin, Simon & Sitbon, Moshe & Kuperman, Alon, 2021. "Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    2. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    3. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    4. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    5. Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
    6. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    7. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    8. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    9. Wen, Xin & Ji, Jie & Li, Zhaomeng, 2023. "Evaluation of the phase change material in regulating all-day electrical performance in the PV-MCHP-TE system in winter," Energy, Elsevier, vol. 263(PC).
    10. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    11. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    12. Matteo d’Angelo & Carmen Galassi & Nora Lecis, 2023. "Thermoelectric Materials and Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-50, September.
    13. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    14. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    15. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    16. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    17. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    18. Shittu, Samson & Li, Guiqiang & Tang, Xin & Zhao, Xudong & Ma, Xiaoli & Badiei, Ali, 2020. "Analysis of thermoelectric geometry in a concentrated photovoltaic-thermoelectric under varying weather conditions," Energy, Elsevier, vol. 202(C).
    19. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    20. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12521-:d:930868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.