IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3365-d262943.html
   My bibliography  Save this article

Cranking Capability Estimation Algorithm Based on Modeling and Online Update of Model Parameters for Li-Ion SLI Batteries

Author

Listed:
  • Tae-Won Noh

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea)

  • Jung-Hoon Ahn

    (Energy Convergence Research Center, Korea Electronics Technology Institute (KETI), 226, Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea)

  • Byoung Kuk Lee

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea)

Abstract

The terminal voltage of a starting–lighting–ignition (SLI) battery can decrease to a value lower than the allowable voltage range because of the high discharge current required to crank the engine of a vehicle. To avoid the safety problems generated by this voltage drop, this paper proposes a cranking capability estimation algorithm. The proposed algorithm includes an equivalent circuit model for describing the instantaneous voltage response to the cranking current profile. This algorithm predicts the minimum value of the terminal voltage for the cranking transient period by analyzing the polarization voltage and dynamic characteristic of the equivalent circuit model. The estimation accuracy is adjusted by an online update for the parameters of the equivalent circuit model, which varies with temperature, aging, and other factors. The proposed algorithm was validated by experiments with a 60Ah LiFePO4-type SLI battery.

Suggested Citation

  • Tae-Won Noh & Jung-Hoon Ahn & Byoung Kuk Lee, 2019. "Cranking Capability Estimation Algorithm Based on Modeling and Online Update of Model Parameters for Li-Ion SLI Batteries," Energies, MDPI, vol. 12(17), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3365-:d:262943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    2. Wang, Kangkang & Gao, Fei & Zhu, Yanli & Liu, Hao & Qi, Chuang & Yang, Kai & Jiao, Qingjie, 2018. "Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge," Energy, Elsevier, vol. 149(C), pages 364-374.
    3. Berecibar, Maitane & Garmendia, Maitane & Gandiaga, Iñigo & Crego, Jon & Villarreal, Igor, 2016. "State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application," Energy, Elsevier, vol. 103(C), pages 784-796.
    4. Lei Zhang & Zhenpo Wang & Fengchun Sun & David G. Dorrell, 2014. "Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter," Energies, MDPI, vol. 7(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    2. Tae-Won Noh & Junghoon Ahn & Byoung Kuk Lee, 2022. "Online Cell Screening Algorithm for Maximum Peak Current Estimation of a Lithium-Ion Battery Pack for Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-14, February.
    3. Andre T. Puati Zau & Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2022. "A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles," Energies, MDPI, vol. 15(7), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    2. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    6. Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
    7. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    8. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    9. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    10. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    11. Mina Naguib & Aashit Rathore & Nathan Emery & Shiva Ghasemi & Ryan Ahmed, 2023. "Robust Electro-Thermal Modeling of Lithium-Ion Batteries for Electrified Vehicles Applications," Energies, MDPI, vol. 16(16), pages 1-20, August.
    12. Sanjay K. Chaudhary & Allan F. Cupertino & Remus Teodorescu & Jan R. Svensson, 2020. "Benchmarking of Modular Multilevel Converter Topologies for ES-STATCOM Realization," Energies, MDPI, vol. 13(13), pages 1-22, July.
    13. Goh, Taedong & Park, Minjun & Seo, Minhwan & Kim, Jun Gu & Kim, Sang Woo, 2018. "Successive-approximation algorithm for estimating capacity of Li-ion batteries," Energy, Elsevier, vol. 159(C), pages 61-73.
    14. Kai Wang & Liwei Li & Huaixian Yin & Tiezhu Zhang & Wubo Wan, 2015. "Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    15. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    16. Kai Yit Kok & Parvathy Rajendran, 2016. "Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    17. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    18. Chen, Kunlong & Zheng, Fangdan & Jiang, Jiuchun & Zhang, Weige & Jiang, Yan & Chen, Kunjin, 2017. "Practical failure recognition model of lithium-ion batteries based on partial charging process," Energy, Elsevier, vol. 138(C), pages 1199-1208.
    19. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Zhilei Ge & Suyun Liu & Guopeng Li & Yan Huang & Yanni Wang, 2017. "Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3365-:d:262943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.