IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3056-d255913.html
   My bibliography  Save this article

Evaluation of Accommodation Capability for Electric Vehicles of a Distribution System Considering Coordinated Charging Strategies

Author

Listed:
  • Qing Deng

    (School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Changsen Feng

    (School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Fushuan Wen

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Chung-Li Tseng

    (UNSW Business School, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Lei Wang

    (State Grid Zhejiang Economic Research Institute, Hangzhou 310008, China)

  • Bo Zou

    (State Grid Zhejiang Economic Research Institute, Hangzhou 310008, China)

  • Xizhu Zhang

    (State Grid Zhejiang Economic Research Institute, Hangzhou 310008, China)

Abstract

In recent years, the ever-increasing charging demand of electric vehicles (EVs) imposes challenges on both power supply security and reliability in the distribution system. In this paper, an EV accommodation capability evaluation model of a distribution system, with high penetrations of flexible resources, is established. Firstly, according to the actual classifications of EVs and transportation rules, a Monte Carlo simulation is used to simulate the charging behaviors of EVs so as to obtain the relevant parameters of EV charging. Then, a coordinated charging optimization model for various types of EVs is proposed based on the charging characteristics of EVs. The presented model comprises a mixed-integer linear programming problem and a constrained optimization problem which are respectively solved by CPLEX (the Simplex method implemented in the °C programming language) and the particle swarm optimization (PSO) algorithm. Last of all, a real-life distribution system in the coastal areas of China is served for demonstrating the feasibility and efficiency of the proposed approach. Moreover, the impacts of flexible resources, distribution network zoning rules, and EV growth on the EV accommodation capability of a distribution system are also discussed.

Suggested Citation

  • Qing Deng & Changsen Feng & Fushuan Wen & Chung-Li Tseng & Lei Wang & Bo Zou & Xizhu Zhang, 2019. "Evaluation of Accommodation Capability for Electric Vehicles of a Distribution System Considering Coordinated Charging Strategies," Energies, MDPI, vol. 12(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3056-:d:255913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tong, Charles, 2006. "Refinement strategies for stratified sampling methods," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1257-1265.
    2. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    3. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    4. Flah Aymen & Chokri Mahmoudi, 2019. "A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City," Energies, MDPI, vol. 12(5), pages 1-22, March.
    5. Yunpeng Guo & Weijia Liu & Fushuan Wen & Abdus Salam & Jianwei Mao & Liang Li, 2017. "Bidding Strategy for Aggregators of Electric Vehicles in Day-Ahead Electricity Markets," Energies, MDPI, vol. 10(1), pages 1-20, January.
    6. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    2. Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
    3. Zeeshan Anjum Memon & Dalila Mat Said & Mohammad Yusri Hassan & Hafiz Mudassir Munir & Faisal Alsaif & Sager Alsulamy, 2023. "Effective Deterministic Methodology for Enhanced Distribution Network Performance and Plug-in Electric Vehicles," Sustainability, MDPI, vol. 15(9), pages 1-37, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    2. Vasileios Boglou & Christos-Spyridon Karavas & Konstantinos Arvanitis & Athanasios Karlis, 2020. "A Fuzzy Energy Management Strategy for the Coordination of Electric Vehicle Charging in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(14), pages 1-34, July.
    3. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    5. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    6. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    8. Theodoros A. Skouras & Panagiotis K. Gkonis & Charalampos N. Ilias & Panagiotis T. Trakadas & Eleftherios G. Tsampasis & Theodore V. Zahariadis, 2019. "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technol., MDPI, vol. 2(1), pages 1-16, December.
    9. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    10. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    11. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    12. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    13. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    14. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    15. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    16. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    17. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Duy-Dinh Nguyen & The-Tiep Pham & Tat-Thang Le & Sewan Choi & Kazuto Yukita, 2023. "A Modulation Method for Three-Phase Dual-Active-Bridge Converters in Battery Charging Applications," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    19. Heba-Allah I. ElAzab & R. A. Swief & Hanady H. Issa & Noha H. El-Amary & Alsnosy Balbaa & H. K. Temraz, 2018. "FPGA Eco Unit Commitment Based Gravitational Search Algorithm Integrating Plug-in Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-17, September.
    20. Milad Akbari & Morris Brenna & Michela Longo, 2018. "Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm," Sustainability, MDPI, vol. 10(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3056-:d:255913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.