Determination of the Carbon Dioxide Sequestration Potential of a Nickel Mine Mixed Dump through Leaching Tests
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
- Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
- Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
- Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
- Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
- Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
- Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
- Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
- Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
- Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
- Noor Allesya Alis Ramli & Faradiella Mohd Kusin & Verma Loretta M. Molahid, 2021. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
- Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
- Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
- Enze Ren & Siyang Tang & Changjun Liu & Hairong Yue & Chun Li & Bin Liang, 2020. "Carbon dioxide mineralization for the disposition of blast‐furnace slag: reaction intensification using NaCl solutions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 436-448, April.
- Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
- Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
- Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
- Park, Sangwon & Song, Kyungsun & Jo, Hwanju, 2017. "Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution," Energy, Elsevier, vol. 124(C), pages 589-598.
- Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
- Xiaolong Wang & Aimaro Sanna & M. Mercedes Maroto‐Valer & Tom Paulson, 2015. "Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 389-402, August.
- Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
- Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
More about this item
Keywords
indirect carbon sequestration; nickel mine waste; leaching test; iron extraction efficiency; face-centered cube design; iron carbonation; carbon dioxide sequestration potential;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2877-:d:251888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.