IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2660-d247458.html
   My bibliography  Save this article

Isolation and Characterization of Microalgae from Diverse Pakistani Habitats: Exploring Third-Generation Biofuel Potential

Author

Listed:
  • Muhammad Maqsood Alam

    (Département de microbiologie, infectiologie et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada
    Plant Genetics and Genomics Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Abdul Samad Mumtaz

    (Plant Genetics and Genomics Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan)

  • Megan Russell

    (Life Sciences Research Center, Department of Biology, United States Air Force Academy, Colorado Springs, CO 80840, USA)

  • Melanie Grogger

    (Life Sciences Research Center, Department of Biology, United States Air Force Academy, Colorado Springs, CO 80840, USA)

  • Don Veverka

    (Life Sciences Research Center, Department of Biology, United States Air Force Academy, Colorado Springs, CO 80840, USA)

  • Patrick C. Hallenbeck

    (Département de microbiologie, infectiologie et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada
    Life Sciences Research Center, Department of Biology, United States Air Force Academy, Colorado Springs, CO 80840, USA)

Abstract

Production of microalgae as feedstock for biofuels must deal with a number of challenges including constraints imposed by local conditions. One solution is to use indigenous strains adapted to local climatic conditions. The present report describes the isolation, identification, and characterization of 32 microalgal strains from different ecological habitats: desert freshwater channels, northern region, and saline regions of Pakistan. The effects of temperature on algal growth rates, biomass productivity, and lipid content were determined through growth at 12, 20, and 35 °C for 15 days under 2% CO 2 Responses to temperature varied among species with 20 °C being the optimum temperature in general, although, exceptionally, the best overall growth rate was found for strain S29 (0.311 d −1 ) at 12 °C. In some cases high biomass productivity was observed at 35 °C, and, depending upon the strain, the maximum lipid content was obtained at different temperatures, including 12 °C. Fatty acid methyl ester (FAME) analysis showed that the major fatty acids present were palmitic, stearic, oleic, linoleic, and linolenic. Oleic acid (C18:1) was the predominant fatty acid, with the specific FAME profile varying with strain. Thus, there is a rich diversity of microalgal strains native to Pakistan, some of which, characterized here, could be suitable for biodiesel production or other biotechnological applications.

Suggested Citation

  • Muhammad Maqsood Alam & Abdul Samad Mumtaz & Megan Russell & Melanie Grogger & Don Veverka & Patrick C. Hallenbeck, 2019. "Isolation and Characterization of Microalgae from Diverse Pakistani Habitats: Exploring Third-Generation Biofuel Potential," Energies, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2660-:d:247458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Thang Duong & Yan Li & Ekaterina Nowak & Peer M. Schenk, 2012. "Microalgae Isolation and Selection for Prospective Biodiesel Production," Energies, MDPI, vol. 5(6), pages 1-15, June.
    2. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    3. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    4. Ramganesh Selvarajan & Tamás Felföldi & Tamás Tauber & Elumalai Sanniyasi & Timothy Sibanda & Memory Tekere, 2015. "Screening and Evaluation of Some Green Algal Strains (Chlorophyceae) Isolated from Freshwater and Soda Lakes for Biofuel Production," Energies, MDPI, vol. 8(7), pages 1-20, July.
    5. Odlare, M. & Nehrenheim, E. & Ribé, V. & Thorin, E. & Gavare, M. & Grube, M., 2011. "Cultivation of algae with indigenous species – Potentials for regional biofuel production," Applied Energy, Elsevier, vol. 88(10), pages 3280-3285.
    6. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changliang Nie & Liqun Jiang & Qingjie Hou & Zhigang Yang & Ze Yu & Haiyan Pei, 2020. "Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16," Energies, MDPI, vol. 13(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    2. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    3. Rishibha Dixit & Surendra Singh & Manoj Kumar Enamala & Alok Patel, 2022. "Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus rotundus -MG910488 under Autotrophic Condition," Clean Technol., MDPI, vol. 4(3), pages 1-19, August.
    4. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    5. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    6. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    7. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    9. Maria Hasnain & Neelma Munir & Zainul Abideen & Heather Macdonald & Maria Hamid & Zaheer Abbas & Ali El-Keblawy & Roberto Mancinelli & Emanuele Radicetti, 2023. "Prospects for Biodiesel Production from Emerging Algal Resource: Process Optimization and Characterization of Biodiesel Properties," Agriculture, MDPI, vol. 13(2), pages 1-29, February.
    10. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    11. Shahnazari, Mahdi & Bahri, Parisa A. & Parlevliet, David & Minakshi, Manickam & Moheimani, Navid R., 2017. "Sustainable conversion of light to algal biomass and electricity: A net energy return analysis," Energy, Elsevier, vol. 131(C), pages 218-229.
    12. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    13. Bai, Xue & Lant, Paul A. & Jensen, Paul D. & Astals, Sergi & Pratt, Steven, 2016. "Enhanced methane production from algal digestion using free nitrous acid pre-treatment," Renewable Energy, Elsevier, vol. 88(C), pages 383-390.
    14. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    15. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    16. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    17. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    18. Gupta, Jharna & Agarwal, Madhu & Dalai, A.K., 2019. "Intensified transesterification of mixture of edible and nonedible oils in reverse flow helical coil reactor for biodiesel production," Renewable Energy, Elsevier, vol. 134(C), pages 509-525.
    19. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2660-:d:247458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.