IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2506-d244040.html
   My bibliography  Save this article

CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance

Author

Listed:
  • Krzysztof Rogowski

    (Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

Aerodynamics of the Darrieus wind turbine is an extremely complex issue requiring the use of very advanced numerical methods. Additional structural components of this device, such as, for example, a rotating shaft disturb the flow through the rotor significantly impairing its aerodynamic characteristics. The main purpose of the presented research is to validate the commonly-used unsteady Reynolds averaged Navier–Stokes (URANS) approach with the shear stress transport (SST) k-ω turbulence model based on the particle image velocimetry (PIV) studies of a two-bladed rotor operating at the moderate tip speed ratio of 4.5. In the present numerical studies, a two-dimensional turbine rotor with a diameter of 1 m was considered. The following parameters were evaluated: instantaneous velocity fields; velocity profiles in the rotor shadow and aerodynamic blade loads. The obtained numerical results are comparable with the reference experimental results taken from the literature. The second purpose of this work was to examine the influence of the rotating rotor shaft/tower on the wind turbine performance. It has been proven that the cylindrical shaft reduces the power of the device by 2.5% in comparison with the non-shaft configuration.

Suggested Citation

  • Krzysztof Rogowski, 2019. "CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance," Energies, MDPI, vol. 12(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2506-:d:244040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    2. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    3. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
    4. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    5. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    6. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    7. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    2. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    3. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    3. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    4. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    5. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    6. Franchina, N. & Kouaissah, O. & Persico, G. & Savini, M., 2022. "Three-dimensional modeling and investigation of the flow around a troposkein vertical axis wind turbine at different operating conditions," Renewable Energy, Elsevier, vol. 199(C), pages 368-381.
    7. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    8. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    9. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    10. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    11. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    12. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    13. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    14. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    15. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    16. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    17. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    18. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    19. Mahdi Abkar, 2018. "Theoretical Modeling of Vertical-Axis Wind Turbine Wakes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    20. Dessoky, Amgad & Lutz, Thorsten & Bangga, Galih & Krämer, Ewald, 2019. "Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model," Renewable Energy, Elsevier, vol. 143(C), pages 404-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2506-:d:244040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.