IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2284-d166696.html
   My bibliography  Save this article

A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions

Author

Listed:
  • Yu-Pei Huang

    (Department of Electronic Engineering, National Quemoy University, Kinmen County 892, Taiwan)

  • Cheng-En Ye

    (Department of Electronic Engineering, National Quemoy University, Kinmen County 892, Taiwan)

  • Xiang Chen

    (Department of Electronic Engineering, National Quemoy University, Kinmen County 892, Taiwan)

Abstract

A rapid response optimization technique for photovoltaic maximum power point tracking (MPPT) under partial shading conditions (PSCs) is proposed in this study. To improve the solar MPPT tracking speed for rapidly-changing environmental conditions and to prevent the conventional firefly algorithm (FA) from becoming trapped at the local peaks and oscillations during the search process, a novel fusion algorithm, named the modified firefly algorithm (MFA), is proposed. The MFA integrates and modifies the processes of two algorithms, namely the firefly algorithm with neighborhood attraction (NaFA) and simplified firefly algorithm (SFA). A modified attraction process for the NaFA is used in the first iteration to avoid trapping at local maximum power points (LMPPs). In addition, in order to improve the convergence speed, the attractiveness factor of the attraction process is designed to be related to the power and position difference of the fireflies. Furthermore, the number of fireflies is designed to decrease in proportion with the iterations in the modified SFA process. Results from both the simulations and evaluations verify that the proposed algorithm offers rapid response with high accuracy and efficiency when encountering PSCs. In addition, the MFA can avoid becoming trapped at LMPPs and ease the oscillations during the search process. Consequently, the proposed method could be considered to be one of the most promising substitutes for existing approaches. In addition, the proposed method is adaptable to different types of solar panels and different system formats with specifically designed parameters.

Suggested Citation

  • Yu-Pei Huang & Cheng-En Ye & Xiang Chen, 2018. "A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 11(9), pages 1-33, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2284-:d:166696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belhachat, Faiza & Larbes, Cherif, 2018. "A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 513-553.
    2. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    3. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    4. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
    5. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    6. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    7. Prasanth Ram, J. & Rajasekar, N., 2017. "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, Elsevier, vol. 118(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novie Ayub Windarko & Muhammad Nizar Habibi & Bambang Sumantri & Eka Prasetyono & Moh. Zaenal Efendi & Taufik, 2021. "A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    4. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    5. Hesham Alhumade & Essam H. Houssein & Hegazy Rezk & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    6. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    7. Ibrahim Al-Wesabi & Zhijian Fang & Hassan M. Hussein Farh & Abdullrahman A. Al-Shamma’a & Abdullah M. Al-Shaalan & Tarek Kandil & Min Ding, 2022. "Cuckoo Search Combined with PID Controller for Maximum Power Extraction of Partially Shaded Photovoltaic System," Energies, MDPI, vol. 15(7), pages 1-26, March.
    8. Eduardo Manuel Godinho Rodrigues & Radu Godina & Mousa Marzband & Edris Pouresmaeil, 2018. "Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity," Energies, MDPI, vol. 11(11), pages 1-21, October.
    9. Mariam A. Sameh & Mostafa I. Marei & M. A. Badr & Mahmoud A. Attia, 2021. "An Optimized PV Control System Based on the Emperor Penguin Optimizer," Energies, MDPI, vol. 14(3), pages 1-16, February.
    10. Cheng-En Ye & Cheng-Chi Tai & Yu-Pei Huang, 2023. "Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    3. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    5. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    6. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    7. Victor Andrean & Pei Cheng Chang & Kuo Lung Lian, 2018. "A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Int," Energies, MDPI, vol. 11(11), pages 1-25, November.
    8. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    9. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    10. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    11. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    13. Mao, Mingxuan & Zhang, Li & Duan, Pan & Duan, Qichang & Yang, Ming, 2018. "Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller," Energy, Elsevier, vol. 143(C), pages 181-190.
    14. Doudou N. Luta & Atanda K. Raji, 2019. "Fuzzy Rule-Based and Particle Swarm Optimisation MPPT Techniques for a Fuel Cell Stack," Energies, MDPI, vol. 12(5), pages 1-15, March.
    15. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    16. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    17. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    18. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    19. Carlos Andres Ramos-Paja & Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez, 2018. "Sliding-Mode Control of Distributed Maximum Power Point Tracking Converters Featuring Overvoltage Protection," Energies, MDPI, vol. 11(9), pages 1-40, August.
    20. Esteban Guerrero-Ramirez & Alberto Martinez-Barbosa & Marco Antonio Contreras-Ordaz & Gerardo Guerrero-Ramirez & Enrique Guzman-Ramirez & Jorge Luis Barahona-Avalos & Manuel Adam-Medina, 2022. "DC Motor Drive Powered by Solar Photovoltaic Energy: An FPGA-Based Active Disturbance Rejection Control Approach," Energies, MDPI, vol. 15(18), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2284-:d:166696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.