IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2122-d163790.html
   My bibliography  Save this article

Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate

Author

Listed:
  • Cristina Baglivo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Delia D’Agostino

    (European Commission, Joint Research Centre (JRC), Directorate-C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit, Via E. Fermi 2479, 21027 Ispra, Italy)

  • Paolo Maria Congedo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

Energy consumption in new buildings can be reduced at the design stage. This study optimizes the ventilation system design of a new residential building located in a warm climate (Southern Italy). Different system options of horizontal air-ground heat exchangers (HAGHEs), also called earth-to-air heat exchangers (EAHX), have been considered to search for the optimal configuration. The thermal behaviour of the obtained configurations has been modelled by the dynamic simulation software TRNSYS 17. The pipe numbers, the air flow rate, and the soil thermal conductivity are among the simulated building components. For each of them, different design options have been analysed to study how each parameter impacts the building thermal behaviour in winter and summer. The operative air temperature (TOP) has been evaluated inside the building prototype to investigate the indoor comfort. The paper demonstrates that HAGHEs permit to assure a suitable indoor climatization if the building envelope is optimized for a warm area. These conditions require high values of heat storage capacity to keep under control the internal temperature fluctuations, especially in summer. The paper confirms the importance of geothermal systems and design optimization to increase energy savings.

Suggested Citation

  • Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2122-:d:163790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    2. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    3. Genchi, Yutaka & Kikegawa, Yukihiro & Inaba, Atsushi, 2002. "CO2 payback-time assessment of a regional-scale heating and cooling system using a ground source heat-pump in a high energy-consumption area in Tokyo," Applied Energy, Elsevier, vol. 71(3), pages 147-160, March.
    4. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    5. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Domenico Laforgia, 2014. "Computational Fluid Dynamic Modeling of Horizontal Air-Ground Heat Exchangers (HAGHE) for HVAC Systems," Energies, MDPI, vol. 7(12), pages 1-18, December.
    6. Dickinson, James & Jackson, Tim & Matthews, Marcus & Cripps, Andrew, 2009. "The economic and environmental optimisation of integrating ground source energy systems into buildings," Energy, Elsevier, vol. 34(12), pages 2215-2222.
    7. Chen, Chao & Sun, Feng-ling & Feng, Lei & Liu, Ming, 2005. "Underground water-source loop heat-pump air-conditioning system applied in a residential building in Beijing," Applied Energy, Elsevier, vol. 82(4), pages 331-344, December.
    8. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    9. Ascione, Fabrizio & Bellia, Laura & Minichiello, Francesco, 2011. "Earth-to-air heat exchangers for Italian climates," Renewable Energy, Elsevier, vol. 36(8), pages 2177-2188.
    10. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    11. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    12. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    13. Delia D’Agostino & Paolo Zangheri & Luca Castellazzi, 2017. "Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings," Energies, MDPI, vol. 10(1), pages 1-15, January.
    14. Li, Hong & Yang, Hongxing, 2010. "Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2818-2825, September.
    15. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    16. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldona Skotnicka-Siepsiak, 2020. "The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems," Energies, MDPI, vol. 14(1), pages 1-21, December.
    2. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    3. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    4. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    6. Cristina Baglivo & Sara Bonuso & Paolo Maria Congedo, 2018. "Performance Analysis of Air Cooled Heat Pump Coupled with Horizontal Air Ground Heat Exchanger in the Mediterranean Climate," Energies, MDPI, vol. 11(10), pages 1-21, October.
    7. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    8. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.
    9. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    10. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    11. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Paolo Maria Congedo & Cristina Baglivo & Giulia Negro, 2021. "A New Device Hypothesis for Water Extraction from Air and Basic Air Condition System in Developing Countries," Energies, MDPI, vol. 14(15), pages 1-18, July.
    13. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    14. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    2. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    3. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    4. Delia D’Agostino & Ilaria Zacà & Cristina Baglivo & Paolo Maria Congedo, 2017. "Economic and Thermal Evaluation of Different Uses of an Existing Structure in a Warm Climate," Energies, MDPI, vol. 10(5), pages 1-29, May.
    5. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    6. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    7. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    8. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    9. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Cristina Baglivo & Paolo Maria Congedo & Delia D’Agostino, 2018. "Multi-Objective Analysis for the Optimization of a High Performance Slab-on- Ground Floor in a Warm Climate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    11. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    12. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    13. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    14. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    15. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    16. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    17. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    18. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    19. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    20. Cristina Baglivo & Marina Bonomolo & Paolo Maria Congedo, 2019. "Modeling of Light Pipes for the Optimal Disposition in Buildings," Energies, MDPI, vol. 12(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2122-:d:163790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.