IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1718-d155536.html
   My bibliography  Save this article

Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming

Author

Listed:
  • Zhiwei Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Tianran Jin

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Shuqiang Zhao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Jinshan Liu

    (Dispatching and Control Center of State Grid Qinghai Electric Power Company, Xining 810008, China)

Abstract

In the context of large-scale renewable energy integrated into an electrical power system, the effects of power forecast errors on the power balance equation of the power system unit commitment model is considered. In this paper, the problem of solving the power balance equation with uncertain variables was studied. The unit commitment model with random variables in the power balance equation was solved by establishing a power system day-ahead optimisation unit commitment model based on chance-constrained dependent chance goal programming. First, to achieve the solution of the power balance equation with random variables, the equality constraint is loosened into an inequality constraint, and the power balance equation constraint is transformed into a dependent chance programming model aimed at maximising the probability of occurrence of random events in an uncertain environment. Then, the dependent chance programming model is proposed to ensure the economy and security of the scheme, and the goal programming model is introduced to facilitate an efficient solution. By combining dependent chance programming and goal programming, a power system day-ahead unit commitment model based on chance-constrained dependent chance goal programming is established. Finally, an example is discussed to demonstrate the effectiveness of the proposed model.

Suggested Citation

  • Zhiwei Li & Tianran Jin & Shuqiang Zhao & Jinshan Liu, 2018. "Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming," Energies, MDPI, vol. 11(7), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1718-:d:155536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    2. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    3. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
    4. Guowei Cai & Wenjin Wang & Junhai Lu, 2016. "A Novel Hybrid Short Term Load Forecasting Model Considering the Error of Numerical Weather Prediction," Energies, MDPI, vol. 9(12), pages 1-19, November.
    5. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
    6. Gang Wang & Dahai You & Zhe Zhang & Li Dai & Qi Zou & Hengwei Liu, 2018. "Network-Constrained Unit Commitment Based on Reserve Models Fully Considering the Stochastic Characteristics of Wind Power," Energies, MDPI, vol. 11(2), pages 1-20, February.
    7. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    8. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    9. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    10. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Georgiadis, Michael C. & Papaioannou, George & Dikaiakos, Christos, 2016. "A mid-term, market-based power systems planning model," Applied Energy, Elsevier, vol. 179(C), pages 17-35.
    11. Ilias G. Marneris & Pandelis N. Biskas & Anastasios G. Bakirtzis, 2017. "Stochastic and Deterministic Unit Commitment Considering Uncertainty and Variability Reserves for High Renewable Integration," Energies, MDPI, vol. 10(1), pages 1-25, January.
    12. Wenlei Bai & Duehee Lee & Kwang Y. Lee, 2017. "Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
    2. Alireza Amani & Hosein Alizadeh, 2021. "Solving Hydropower Unit Commitment Problem Using a Novel Sequential Mixed Integer Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1711-1729, April.
    3. Kun Yang & Kan Yang, 2021. "Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3771-3790, September.
    4. Wang, Zizhao & Wu, Feng & Li, Yang & Shi, Linjun & Lee, Kwang Y. & Wu, Jiawei, 2023. "Itô-theory-based multi-time scale dispatch approach for cascade hydropower-photovoltaic complementary system," Renewable Energy, Elsevier, vol. 202(C), pages 127-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    2. Ilias G. Marneris & Pandelis N. Biskas & Anastasios G. Bakirtzis, 2017. "Stochastic and Deterministic Unit Commitment Considering Uncertainty and Variability Reserves for High Renewable Integration," Energies, MDPI, vol. 10(1), pages 1-25, January.
    3. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    4. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    5. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    6. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    7. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
    8. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    9. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    10. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
    12. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets," Applied Energy, Elsevier, vol. 231(C), pages 235-258.
    13. Michael L. Polemis, 2018. "A mixed integer linear programming model to regulate the electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 183-208, July.
    14. Mostafa Farrokhabadi, 2019. "Data-Driven Mitigation of Energy Scheduling Inaccuracy in Renewable-Penetrated Grids: Summerside Electric Use Case," Energies, MDPI, vol. 12(12), pages 1-23, June.
    15. Nikolaos E. Koltsaklis & Athanasios S. Dagoumas, 2021. "A power system scheduling model with carbon intensity and ramping capacity constraints," Operational Research, Springer, vol. 21(1), pages 647-687, March.
    16. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    17. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    18. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    19. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    20. Abdin, Islam F. & Zio, Enrico, 2018. "An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production," Applied Energy, Elsevier, vol. 222(C), pages 898-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1718-:d:155536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.