IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p639-d136084.html
   My bibliography  Save this article

Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

Author

Listed:
  • Rafał Łukajtis

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Karolina Kucharska

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Iwona Hołowacz

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Piotr Rybarczyk

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Katarzyna Wychodnik

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Edyta Słupek

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Paulina Nowak

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

  • Marian Kamiński

    (Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland)

Abstract

This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

Suggested Citation

  • Rafał Łukajtis & Karolina Kucharska & Iwona Hołowacz & Piotr Rybarczyk & Katarzyna Wychodnik & Edyta Słupek & Paulina Nowak & Marian Kamiński, 2018. "Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation," Energies, MDPI, vol. 11(3), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:639-:d:136084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    2. Tavva, S.S. Mohan Dev & Deshpande, Amol & Durbha, Sanjeeva Rao & Palakollu, V. Arjuna Rao & Goparaju, A. Uttam & Yechuri, V. Rao & Bandaru, V. Rao & Muktinutalapati, V. Subba Rao, 2016. "Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass," Renewable Energy, Elsevier, vol. 86(C), pages 1317-1323.
    3. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun-Young Park & Jung-Kyu Park, 2021. "Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass," Energies, MDPI, vol. 14(23), pages 1-9, December.
    2. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    3. Rafał Łukajtis & Piotr Rybarczyk & Karolina Kucharska & Donata Konopacka-Łyskawa & Edyta Słupek & Katarzyna Wychodnik & Marian Kamiński, 2018. "Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis," Energies, MDPI, vol. 11(4), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    2. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    3. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    4. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Alessandra Morana & Giuseppe Squillaci & Susana M. Paixão & Luís Alves & Francesco La Cara & Patrícia Moura, 2017. "Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells," Energies, MDPI, vol. 10(10), pages 1-14, September.
    6. Antony V. Samrot & Deenadhayalan Rajalakshmi & Mahendran Sathiyasree & Subramanian Saigeetha & Kasirajan Kasipandian & Nachiyar Valli & Nellore Jayshree & Pandurangan Prakash & Nagarajan Shobana, 2023. "A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    7. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    8. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    9. Satar, Ibdal & Daud, Wan Ramli Wan & Kim, Byung Hong & Somalu, Mahendra Rao & Ghasemi, Mostafa, 2017. "Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose," Energy, Elsevier, vol. 139(C), pages 1188-1196.
    10. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
    11. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    12. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    13. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    15. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    16. Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.
    17. Kumar, Gopalakrishnan & Bakonyi, Péter & Kobayashi, Takuro & Xu, Kai-Qin & Sivagurunathan, Periyasamy & Kim, Sang-Hyoun & Buitrón, Germán & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2016. "Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 879-891.
    18. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    19. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    20. Hu, Bin-Bin & Wang, Ji-Lian & Wang, Yu-Tao & Zhu, Ming-Jun, 2019. "Specify the individual and synergistic effects of lignocellulose-derived inhibitors on biohydrogen production and inhibitory mechanism research," Renewable Energy, Elsevier, vol. 140(C), pages 397-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:639-:d:136084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.