IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034990.html
   My bibliography  Save this article

Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes

Author

Listed:
  • Zagrodnik, Roman
  • Duber, Anna

Abstract

Integration of dark and photo-fermentation is a promising strategy to efficiently produce renewable hydrogen from different types of waste biomass. In this study, sequential and co-culture dark-photo fermentations were evaluated and compared during continuous operation using synthetic lignocellulose hydrolysate as a substrate. Mixed dark-fermentative bacterial consortium was combined with two different photo-fermentative bacterial cultures: pure culture of Rhodobacter sphaeroides (RSC) and mixed photoheterotrophic consortium (MPC). The sequential process showed higher total H2 yields compared to co-culture fermentation for both RSC and MPC. The highest yield of 4.15 mol H2/molsugar was obtained for the sequential process with RSC at an HRT of 3.5 days and pH 7.5. For the co-culture process, the yield reached 2.88 mol H2/molsugar at pH 7.0 and an HRT of 3.5 days. Complete sugar utilization was observed for dark fermentation. RSC preferred acetate as a carbon source, while MPC preferred butyrate. Photoheterotrophic bacteria, Rhodopseudomonas pseudopalustris and Rhodoplanes piscinae, present in the MPC inoculum were outcompeted by undesirable microorganisms during the continuous process, resulting in low HPR. On the other hand, in both sequential and co-culture processes, a high relative abundance of R. sphaeroides (>40%) was observed in the RSC, indicating effective cooperation between dark and photo bacteria.

Suggested Citation

  • Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034990
    DOI: 10.1016/j.energy.2023.130105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva-Illanes, Fernando & Tapia-Venegas, Estela & Schiappacasse, M. Cristina & Trably, Eric & Ruiz-Filippi, Gonzalo, 2017. "Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol," Energy, Elsevier, vol. 141(C), pages 358-367.
    2. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    3. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.
    4. Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
    5. Zhang, Zhiping & Ai, Fuke & Zhang, Haorui & Zhang, Huan & Zhu, Shengnan & Zhang, Quanguo & Li, Yameng, 2023. "Synergetic effect evaluation of light and mass transfer enhancement strategies on photo fermentative biohydrogen production process: Illumination, shake, and high solid level," Energy, Elsevier, vol. 269(C).
    6. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    7. Machado, R.G. & Moreira, F.S. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2018. "Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation," Energy, Elsevier, vol. 153(C), pages 861-869.
    8. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Niño-Navarro, C. & Chairez, I. & Christen, P. & Canul-Chan, M. & García-Peña, E.I., 2020. "Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population," Renewable Energy, Elsevier, vol. 147(P1), pages 924-936.
    10. Xia, Ao & Jacob, Amita & Herrmann, Christiane & Murphy, Jerry D., 2016. "Fermentative bio-hydrogen production from galactose," Energy, Elsevier, vol. 96(C), pages 346-354.
    11. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    12. Liu, Wei & Pang, Jian & Wu, Dong & Zhang, Le & Xing, Dexun & Hu, Jianhua & Li, Yongli & Liu, Zhanying, 2023. "Hydrogen production by a novel Klebsiella pneumoniae strain from sheep rumen uses corn straw as substrate," Energy, Elsevier, vol. 282(C).
    13. Castelló, Elena & Nunes Ferraz-Junior, Antonio Djalma & Andreani, Cristiane & Anzola-Rojas, Melida del Pilar & Borzacconi, Liliana & Buitrón, Germán & Carrillo-Reyes, Julián & Gomes, Simone Damasceno , 2020. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    2. Liu, Yuxiang & Liang, Tao & Yuan, Xin & Lv, Yongkang, 2019. "The performance of COD removal and hydrogen production in a single stage system from starch using the consortium PB-Z under simulated natural conditions," Energy, Elsevier, vol. 173(C), pages 951-958.
    3. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    4. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    5. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    6. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    7. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Zieliński, Marcin & Korzeniewska, Ewa & Filipkowska, Zofia & Dębowski, Marcin & Harnisz, Monika & Kwiatkowski, Rafał, 2017. "Biohydrogen production at low load of organic matter by psychrophilic bacteria," Energy, Elsevier, vol. 134(C), pages 1132-1139.
    10. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    12. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    13. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    15. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    16. Malik, Ritu & Tomer, Vijay K., 2021. "State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    18. Schlund, David & Schulte, Simon & Sprenger, Tobias, 2022. "The who’s who of a hydrogen market ramp-up: A stakeholder analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
    20. Shen, Qiuwan & Shao, Zicheng & Li, Shian & Yang, Guogang & Sunden, Bengt, 2023. "Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.